全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

单层与多层蜂窝芯玻璃钢蜂窝板的热性能模拟

, PP. 505-511

Keywords: 玻璃钢蜂窝板,有限元,当量热导率,热响应,传热机制,多层蜂窝芯

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于ANSYS有限元软件,模拟研究了玻璃钢蜂窝板的稳态、瞬态传热。在与实际试验保持一致的情况下,建立了玻璃钢蜂窝板流体与固体耦合传热平面模型,研究了蜂窝芯为不同工况时,玻璃钢蜂窝板稳态与瞬态热性能、热量传递机制,稳态的热性能的当量热导率的模拟结果与SwannandPittman经验公式计算的结果十分吻合,并且瞬态表面热响应的模拟结果与试验结果也较吻合,说明ANSYS有限元方法能够准确模拟玻璃钢蜂窝板传热。此外,蜂窝芯腔表面间的辐射换热是玻璃钢蜂窝板的一个重要的热量传递机制,在高温情况下应考虑辐射换热。随着蜂窝芯高度的增加,玻璃钢蜂窝板的导热系数逐渐增大。玻璃钢蜂窝板的总高度固定时,随着蜂窝芯层数的增加,玻璃钢蜂窝板的导热系数逐渐降低,温度逐渐降低并趋于稳定值。

References

[1]  Swann R T, Pittman C M. Analysis of effective thermal conductivities of honeycomb-core and corrugated sandwich panels[R]. NASA Technical Note D-714, 1961.
[2]  Kaushika N D, Arulanantham M. Radioactive heat transfer across transparent honey-comb insulation materials[J]. International communications in heat and mass transfer, 1995, 22(5):751-760
[3]  Copenhaver D C, Scott E P, Hanuska A. Thermal characterization of honeycomb core sandwich structures[J]. Journal of spacecraft and rockets, 1998, 35(4): 539-545.
[4]  Fatemi J. Metallic thermal protection system for the expert reentry vehicle: modeling and analysis[C]//Thermal Protection Systems and Hot Structures. 2006, 631: 39.
[5]  Blosser M L. Investigation of fundamental modeling and thermal performance issues for a metallic thermal protection system design[C]//40th Aerospace Sciences Meeting & Exhibit, 2002:14-17
[6]  陈 勇, 高德平. 金属蜂窝平板加热过程的数值模拟及试验研究[J]. 理化检验:物理分册, 2003, 39(5):234-236 Chen Yong, Gao Deping. Numerical simulation and heating test of a metallic honeycombed plate[J]. PTCA(Part A: Physical Testing), 2003, 39(5):234-236.
[7]  梁 伟, 张立春, 吴大方, 等. 金属蜂窝夹芯板瞬态热性能的计算与试验分析[J]. 航空学报, 2009, 30(4):672-677 Liang Wei, Zhang Licun, Wu Dafang, et al. Computation and analysis of transient thermal performance of metal honeycomb sandwich panels[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(4):672-677.
[8]  Yi L, Peng Y, Sun Q. Research of the higher-order finite element arithmetic for radiation exchange[J]. Chinese Journal of Aeronautics, 2006, 19(3):197-202
[9]  李东辉, 夏新林, 孙凤贤. 气动加热下金属蜂窝板热响应特性数值模拟[J]. 宇航学报, 2008, 29(6):2019-2022 Li Donghui, Xia Xinlin, Sun Fengxian. Numertical method for thermal response characteristics of metallic honeycomb sandwich panels under aerodynamic heating[J] Journal of Astronautics, 2008, 29(6):2019-2022.
[10]  章熙民, 任泽需, 梅飞鸣. 传热学[M]. 北京:中国建筑工业出版社, 2007: 113-127. Zhang Xinmin, Ren Zexu, Mei Feiming. Heat transmission science[M]. Beijing: China Building Industry Press, 2007: 113-127
[11]  周祝林, 妒嫉予, 区延杰, 等. 石材铝蜂窝复合板导热系数试验研究分析[J]. 玻璃钢/复合材料, 2011, 4:14-16 Zhou Zhulin, Du Jiyu, Qu Yanjie, et al. Study of thermal conductivity of stone sanwich structure panels with honeycomb core[J]. FRP/Composites Magazine, 2011, 4:14-16.
[12]  周祝林, 王亚熊, 姚 辉, 等. 玻璃钢蜂窝夹层结构板热导率研究[J]. 玻璃钢/复合材料, 2006(2):18-22 ZHOU Zhulin, Wang Yaxiong, Yao Hui, et al. Study of thermal conductivity of GFRP sandwich structure panels with honeycomb core[J]. FRP/Composites Magazine, 2006(2):18-22.
[13]  Ghoneim A A. Performance optimization of solar collector equipped with different arrangements of squarecelled honeycomb[J]. International Journal of Thermal Science 2005, 44(1):95-105.
[14]  Edwards D K, Arnold J N, Wu P S. Correlations for natural convection through high L/D rectangular cells[J]. Journal of Heat Transfer, 1979, 101(4): 741-743
[15]  董 葳, 范绪萁. 热防护系统中六角蜂窝腔内的流动换热研究[J]. 空气动力学报, 2005, 23(4):497-500 Dong Wei, Fan Xuqi. A numerical study on flow and heat transfer in a hexagonal honeycomb enclosure of TPS[J]. ACTA Aerodynamic Sinica, 2005, 23(4):497-500.
[16]  景 丽, 王广飞, 唐绍峰, 等. 金属蜂窝夹芯板辐射导热耦合问题[J]. 哈尔滨工业大学学报, 2010, 42(5):827-831. Jing Li, Wang Guangfei, Tang Shaofeng, et al. Radiation and conduction coupling problems of honeycomb sandwich panel[J]. Journal of Harbin Institute of Technology, 2010, 42(5): 827-831.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133