Kojima Y, Kamado S. Fundamental magnesium researches in Japan[J]. Materials Science Forum, 2005, 488: 9-16.
[2]
李淑波, 郑明毅, 甘为民, 等. SiCW/AZ91镁基复合材料及AZ91镁合金的高温变形行为[J]. 复合材料学报, 2005, 22(3): 103-108. Li Shubo, Zheng Mingyi, Gan Weimin, et al. Hot deformation behavior of SiCW/AZ91 magnesium matrix composite and AZ91 alloy[J]. Acta Materiae Compositae Sinica, 2005, 22(3): 103-108.
[3]
谢 文, 刘 越, 张振伟, 等. 挤压温度对15vol % SiCP/Mg-9Al 镁基复合材料拉伸性能与断口形貌的影响[J]. 复合材料学报, 2006, 23(6): 127-133. Xie Wen, Liu Yue, Zhang Zhenwei, et al. Influence of extrusion temperature on the tensile properties of 15vol% SiCP/Mg-9Al composite[J]. Acta Materiae Compositae Sinica, 2006, 23(6): 127-133.
[4]
Zhang C F, Fan T X, Cao W, et al. Size control of in-situ formed reinforcement in metal melts-theoretical treatment and application to in-situ (AlN+Mg2Si)/Mg composites[J]. Composites Science and Technology, 2009, 69(15): 2688-2694.
[5]
Wang H Y, Jiang Q C, Li X L, et al. In situ synthesis of TiC/Mg composites in molten magnesium[J]. Scripta Materialia, 2003, 48(9): 1349-1354.
[6]
何广进, 李文珍. 纳米颗粒分布对镁基复合材料强化机制的影响[J]. 复合材料学报, 2013, 30(2): 105-110. He Guangjin, Li Wenzhen. Influence of nano particle distribution on the strengthening mechanisms of magnesium matrix composites[J]. Acta Materiae Compositae Sinica, 2013, 30(2): 105-110.
[7]
Wang X J, Hu X S, Wu K, et al. Hot deformation behavior of SiCP/AZ91 magnesium matrix composite fabricated by stir casting[J]. Materials Science and Engineering: A, 2008, 492(1): 481-485.
[8]
Deng K K, Wu K, Wang X J, et al. Microstructure evolution and mechanical properties of a particulate reinforced magnesium matrix composites forged at elevated temperatures[J]. Materials Science and Engineering: A, 2010, 527(6): 1630-1635.
[9]
Deng K K, Wang X J, Gan W M, et al. Isothermal forging of AZ91 reinforced with 10 vol% silicon carbon particles[J]. Materials Science and Engineering: A, 2011, 528(3): 1707-1712.
[10]
Nie K B, Wu K, Wang X J, et al. Multidirectional forging of magnesium matrix composites: effect on microstructures and tensile properties[J]. Materials Science and Engineering: A, 2010, 527(27): 7364-7368.
[11]
Wu K, Deng K K, Nie K B, et al. Microstructure and mechanical properties of SiCP/AZ91 composite deformed through a combination of forging and extrusion process[J]. Materials Design, 2010, 31(8): 3929-3932.
[12]
Deng K K, Wu K, Wu Y W, et al. Effect of submicron size SiC particulates on microstructure and mechanical properties of AZ91 magnesium matrix composites[J]. Journal of Alloys and Compounds, 2010, 504(2): 542-547.
[13]
Doherty R D, Hughes D A, Humphreys F J, et al. Current issues in recrystallization: a review[J]. Materials Science and Engineering: A, 1997, 238(2): 219-274.
[14]
Humphreys F J. Local lattice rotations at second phase particles in deformed metals[J]. Acta Metallurgica, 1979, 27(12): 1801-1814.
[15]
Zhang Z, Chen D L. Contribution of Orowan strengthening effect in particulate reinforced metal matrix nanocomposites[J]. Materials Science and Engineering: A, 2008, 483: 148-152.
[16]
Habibnejad-Korayem M, Mahmudi R, Poole W J. Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles[J]. Materials Science and Engineering: A, 2009, 519(1): 198-203.
[17]
Koike J. Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline Mg alloys at room temperature[J]. Metallurgical and Materials Transactions A, 2005, 36(7): 1689-1696.
[18]
Aikin Jr R M, Christodoulou L. The role of equiaxed particles on the yield stress of composites[J]. Scripta Metal-lurgica Materialia, 1991, 25(1): 9-14.