全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

纤维缠绕复合材料固化过程残余应力/应变的三维数值模拟

, PP. 1006-1012

Keywords: 缠绕复合材料,固化工艺,残余应力,残余应变,数值模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用有限元分析软件ABAQUS,对具有金属内衬的纤维缠绕复合材料圆筒在固化过程中残余应力及应变的变化规律进行了模拟计算。采用FORTRAN语言编制了用以分析固化过程中残余应力的子程序,该子程序考虑了固化过程中复合材料力学性质的变化和由于树脂固化收缩产生的化学收缩应变。算例结果表明:复合材料和金属内衬的残余应力在初始阶段均接近于零,当固化到一定阶段,残余应力迅速增加并且很快达到最大值,在降温阶段释放了部分的残余应力;在整个固化过程中,金属内衬受到压应力,而纤维缠绕层受到拉应力。本文中的三维有限元模型可以得到任意时刻复合材料的温度及固化度分布,通过数值模拟可以有效地优化复合材料固化工艺参数,提高制件的质量。

References

[1]  Russell J D, Madhukar M S, Genidy M S, et al. A new method to reduce cure-induced stresses in thermoset polymer composites III: Correlating stress history to viscosity, degree of cure, and cure shrinkage[J]. Journal of Composite Materials, 2000, 34(22): 1926-1947.
[2]  张纪奎, 郦正能, 关志东, 等. 固化度与固化收缩对非对称复合材料层合板固化变形的影响[J]. 复合材料学报, 2007, 24(2): 120-124. Zhang Jikui, Li Zhengneng, Guan Zhidong, et al. Influence of degree of cure and cure shrinkage on the finial deformation of the unsymmetric composite laminates[J]. Acta Materiae Compositae Sinica, 2007, 24(2): 120-124.
[3]  黄其忠, 任明法, 陈浩然. 复合材料网格结构软模共固化成型工艺数值仿真[J]. 复合材料学报, 2010, 27(1): 25-31. Huang Qizhong, Ren Mingfa, Chen Haoran. Numerical simulation of soft-mode aided co-curing for advanced grid stiffen structures[J]. Acta Materiae Compositae Sinica, 2010, 27(1): 25-31.
[4]  Antonucci V, Giordano M, Hsiao K T, et al. A methodology to reduce thermal gradients due to the exothermic reactions in composites processing[J]. International Journal of Heat and Mass Transfer, 2002, 45(8) : 1675- 1684.
[5]  Zobeiry N, Vaziri R, Poursartip A. Computationally efficient pseudo-viscoelastic models for evaluation of residual stresses in thermoset polymer composites during cure[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(2): 247-256.
[6]  Li J, Yao X F, Liu Y H, et al. A study of the integrated composite material structures under different fabrication processing[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(4): 455-462.
[7]  Behzad T, Sain M. Finite element modeling of polymer curing in natural fiber reinforced composites[J]. Composites Science and Technology, 2007, 67(7): 1666-1673.
[8]  黄其忠, 任明法, 陈浩然, 等. 复合材料先进网格结构共固化工艺的温度场模拟[J]. 复合材料学报, 2011, 28(3): 141-147. Huang Qizhong, Ren Mingfa, Chen Haoran, et al. Simulation of temperature field for an advanced grid-stiffened composite structure in the co-curing process[J]. Acta Materiae Compositae Sinica, 2011, 28(3): 141-147.
[9]  Lee W I, Loos A C, Springer G S. Heat of reaction, degree of cure, and viscosity of hercules 3501-6 resin[J]. Journal of Composite Materials, 1982, 16(6): 510-520.
[10]  Kim Y K, White S R. Viscoelastic analysis of processing-induced residual stresses in thick composite laminates[J]. Mechanics of Composite Materials and Structures, 1997, 4(4): 361-387.
[11]  Tang J M, Lee W I, Spring G S. Effects of cure pressure on resin flow, voids and mechanical properties[J]. Journal of Composite Materials, 1987, 21(5): 421-440.
[12]  Dusi M R, Lee W I, Ciriscioli P R, et al. Cure kinetics and viscosity of fiberite 976 resin[J]. Journal of Composite Materials, 1987, 21(3): 243-261.
[13]  Lee S Y, Spring G S. Effects of cure on the mechanical properties of composites[J]. Journal of Composite Materials, 1988, 22(1): 15-29.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133