全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

丝束变角度层合板屈曲性能的有限元分析

, PP. 991-997

Keywords: 层合板,丝束变角度,连续丝束剪切,自动铺丝技术,最小转弯半径

Full-Text   Cite this paper   Add to My Lib

Abstract:

连续丝束剪切(CTS)作为一种新的丝束变角度(VAT)铺放技术,能克服传统的自动铺丝技术(AFP)的诸多缺陷。鉴于此,分别采用CTS和AFP这2种技术铺设而成的VAF层合板为研究对象,对其屈曲性能进行了有限元分析;在施加相同端部轴向位移的条件下,以铺层顺序[90±]4s为例,对比分析了2种层合板的内力分布;最后,讨论了丝束最小转弯半径对2种铺放技术的影响。结果表明:CTS层合板因其变厚度的特性,其屈曲性能优于AFP层合板;与AFP技术受制于最小转弯半径,导致其在小尺寸结构中的应用受到限制相比,CTS技术适用于各种尺寸的层合板。

References

[1]  Hyer M W, Charette R F. Use of curvilinear fiber format in composite structure design[J]. AIAA Journal, 1991, 29(6)1011-1015.
[2]  Gürdal Z, Olmedo R. In-plane response of laminates with spatially varying fiber orientations: variable stiffness concept[J]. AIAA Journal, 1993, 31(4): 751-758.
[3]  Tatting B F, Gürdal Z. Design and manufacture of elastically tailored tow placed plates, NASA/CR-2002-211919[R]. Washington: NASA, 2002.
[4]  Gürdal Z, Tatting B F, Wu C K. Variable stiffness composite panels: effects of stiffness variation the in-plane and buckling response[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(5): 911-922.
[5]  Wu Z M, Weaver P M, Raju G, et al. Buckling analysis and optimisation of variable angle tow composite plates[J]. Thin-Walled Structures, 2012, 60: 163-172.
[6]  Blom A W, Lopes C S, Kromwijk P J, et al. A theoretical model to study the influence of tow-drop areas on the stiffness and strength of variable-stiffness laminates[J]. Journal of Composite Materials, 2009, 43(5): 403-425.
[7]  Waldhart C. Analysis of tow-placed, variable-stiffness laminates[D]. Virginia: Virginia Polytechnic Institute and State University, 1996.
[8]  Tatting B F, Gürdal Z. Automated finite element analysis of elastically-tailored plates, NASA/CR-2003-212679[R]. Washington: NASA, 2003.
[9]  Kim B C, Hazra K, Weaver P, et al. Limitations of fibre placement techniques for variable angle tow composites and their process-induced defects[C]//Proceedings of the 18th International Conference on Composite Materials. London: The Institute of Materials, Minerals and Mining, 2011: 1-6.
[10]  Kim B C, Potter K, Weaver P M. Continuous tow shearing for manufacturing variable angle tow composites[J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(8): 1347-1356.
[11]  Liu W L, Butler R, Kim H A. Buckling optimization of variable angle tow panels using exact strip models, AIAA-2012-1460[R]. Reston: AIAA, 2012.
[12]  Ghiasi H, Fayazbakhsh K, Pasini D, et al. Optimum stacking sequence design of composite materials Part II: Variable stiffness design[J]. Composite Structures, 2010, 93(1): 1-13.
[13]  Gürdal Z, Tatting B F. Tow-placement technology and fabrication issues for laminated composite structures, AIAA-2005-2017[R]. Reston: AIAA, 2005.
[14]  IJsselmuiden S T. Optimal design of variable stiffness composite structures using lamination parameters[D]. Delft: Delft University of Technology, 2012.
[15]  Raju G, Wu Z, Kim B C, et al. Prebuckling and buckling analysis of variable angle tow plates with general boundary conditions[J]. Composite Structures, 2012, 94(9): 2961-2970

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133