全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

复合泡沫塑料模量和屈服强度的理论预测

, PP. 998-1005

Keywords: 玻璃微珠,复合泡沫,力学性能,模量,屈服强度,失效分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于广义自洽原理,利用四相球模型研究了复合泡沫塑料在拉伸加载下的力学性能,并对其可能发生的破坏进行了分析,发现模型退化后给出的泡沫材料强度预测结果与实验值符合较好。通过分析微珠与基体界面的法向应力集中系数和基体相的vonMises应力分布,可以发现,当微珠壁极薄时,微珠的力学行为与实心柔性粒子相似,随着微珠壁厚的增加,微珠对材料整体力学行为的影响与实心刚性粒子的影响接近相同。通过引入破坏影响因子,对复合泡沫塑料的强度预测进行研究,提出了一种有效的预测方法。

References

[1]  Marur P R. Effective elastic moduli of syntactic foams[J].Materials Letters, 2005, 59(14-15): 1954-1957.
[2]  Bardella L, Genna F. On the elastic behavior of syntactic foams[J]. International Journal of Solids and Structures, 2001, 38(40-41): 7235-7260.
[3]  卢子兴. 复合泡沫塑料力学行为的研究综述[J]. 力学进展, 2004, 34(3): 341-348. Lu Zixing. A review of studies on the mechanical behavior of syntactic foamed plastics[J]. Advances in Mechanics, 2004, 34(3): 341-348.
[4]  卢子兴, 高镇同.应用微分方法确定复合泡沫塑料的弹性模量[J].北京航空航天大学学报, 1996, 22(6): 692-695. Lu Zixing, Gao Zhentong. Determination of Young's modulus of the syntactic foam plastics by differential scheme[J]. Journal of Beijing University of Aeronautics and Astronautics, 1996, 22(6): 692-695.
[5]  卢子兴, 高镇同.含空心球复合材料有效模量的确定[J].北京航空航天大学学报, 1997, 23(4): 461-466. Lu Zixing, Gao Zhentong. Determination of effective moduli of composite of hollow spheres in a matrix[J]. Journal of Beijing University of Aeronautics and Astronautics, 1997, 23(4): 461-466.
[6]  Yuan Yinglong, Lu Zixing. Modulus prediction and discussion of reinforced syntactic foams with coated hollow spherical inclusions[J].Applied Mathematics and Mechanics, 2004, 25(5): 528-535.
[7]  邹波, 卢子兴.基于五相球模型确定含涂层空心微球复合材料的有效模量[J].复合材料学报, 2006, 23(5): 137-142. Zou Bo, Lu Zixing. Determination of the effective moduli of composite reinforced by hollow coating spheres based on the five phase spherical model[J]. Acta Materiae Compositae Sinica, 2006, 23(5): 137-142.
[8]  Duan H L, Wang J, Huang Z P, et al. Eshelby formalism for nano-inhomogeneities[J]. Proceedings of the Royal Society of London A, 2005, 461(2062): 3335-3353.
[9]  邹波, 卢子兴. 中空纳米微球填充复合材料的有效力学性能[J].力学学报, 2009, 41(2): 265-272. Zou Bo, Lu Zixing. Effective mechanical properties of solid filled by hollow nanospheres[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(2): 265-272.
[10]  Christensen R M. Mechanics of composite materials[M]. New York: John Wiley & Sons, 1979: 40-59.
[11]  邹波. 填充泡沫塑料的力学性能研究及失效机理分析[D]. 北京: 北京航空航天大学, 2008. Zou Bo. Study on mechanical properties and failure mechanism of syntactic foams[D]. Beijing: Beihang University, 2008.
[12]  张芮, 卢锡年.球形粒子填充复合材料微观应力场的有限元分析[J].复合材料学报, 1995, 12(4): 90-93. Zhang Rui, Lu Xinian. Finite element analysis of micro-stress distribution in particle filled composite[J]. Acta Materiae Compositae Sinica, 1995, 12(4): 90-93.
[13]  Zhang YL, Rodrigue D, Abdellatif A. High density polyethylene foams. III. Tensile properties[J]. Journal of Applied Polymer Science, 2003, 90(8): 2130-2138.
[14]  Nikhil G, Ruslan N. Tensile properties of glass microballoon-epoxy resin syntactic foams[J]. Journal of Applied Polymer Science, 2006, 102(2): 1254-1261.
[15]  Michel P, Ezio T. Fiber-reinforced syntactic foams as a new lightweight structural three-phase composite[J]. Applied Composite Materials, 2001, 8(5): 343-359.
[16]  EI-Hadek M A, Tippur H V. Simulation of porosity by microballoon dispersion in epoxy and urethane: mechanical measurements and models[J]. Journal of Materials Science, 2002, 37(8): 1649-1660.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133