全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

石英纤维/聚酰胺46复合材料的制备及表征

, PP. 895-901

Keywords: 石英纤维,聚酰胺46,复合材料,生物材料,界面结合

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了制备出一种可用于长段承重骨的修复、具有优异力学性能的复合材料,利用含量为30wt%和45wt%的石英纤维(QF)分别增强聚酰胺46(PA46),挤塑得到QF/PA46复合材料。采用燃烧实验、FTIR、XRD、SEM及DSC等对复合材料的结构、界面、力学性能和非等温结晶行为进行研究。结果表明:QF在复合材料中分布均匀且没有明显的取向,QF与PA46基体之间形成了氢键的结合;材料的结晶度随着QF含量的增加而降低,QF的加入提高了PA46的结晶速率,起到了异相成核剂作用,但是QF与PA46间的界面作用阻碍了PA46分子的有序排列,降低了结晶度;随着降温速率的增加,PA46和QF/PA46复合材料的结晶峰都从高温向低温方向移动,结晶的范围随降温速率的增加而变宽。力学性能测试结果表明:随着QF含量的增加,QF/PA46复合材料的拉伸强度和弯曲强度都显著增加,且与人体自体骨组织的力学强度相接近。复合材料的细胞实验结果(采用L929成纤维细胞)表明:2种QF含量的QF/PA46复合材料细胞毒性为1级,具有较好的生物安全性。QF/PA46复合材料可以应用于临床的长承载骨修复等相关领域。

References

[1]  蒋诗才, 石峰晖. 芳纶纤维表面分析及其对双马来酰亚胺树脂复合材料界面性能的影响[J].材料工程, 2012(9): 54-57. Jiang Shicai, Shi Fenghui.Effect of surface properties on interfacial properties of aramid fiber reinforced bismaleimide resin matrix composites[J].Journal of Materials Engineering, 2012(9): 54-57.
[2]  张士华, 陈光, 崔崇, 等.偶联剂处理对玻璃纤维/尼龙复合材料力学性能的影响[J].复合材料学报, 2006, 23(3): 31-36. Zhang Shihua, Chen Guang, Cui Chong, et al.Effect of silicon coupling agent treatment of glass fiber on mechanical properties of GFRMCN[J].Acta Materiae Compositae Sinica, 2006, 23(3): 31-36.
[3]  邓纯博, 刘东研, 刘吉泉, 等.聚醚醚酮及其复合材料作为骨科植入物的研究进展[J].生物医学工程与临床, 2009, 13(5): 473-477. Deng Chunbo, Liu Dongyan, Liu Jiquan, et al.Advance in polyetheretherketone (PEEK) and its composite material for orthopaedic implants[J].Biomedical Engineering and Clinical Medicine, 2009, 13(5): 473-477.
[4]  黄捷, 杨丹, 屈树新.超高分子量聚乙烯在人工髋关节中的摩擦磨损研究[J].材料导报A, 2011, 25(2): 136-140. Huang Jie, Yang Dan, Qu Shuxin.Study on friction and wear properties of ultra-high molecular weight polyethlene in the artificial hip joint[J].Materials Review A, 2011, 25(2): 136-140.
[5]  福本修.聚酰胺树脂手册[M].北京: 中国石化出版社, 1994: 1-15. Fu Benxiu. Polyamide resin manual[M].Beijing: China Petrochemical Press, 1994: 1-15.
[6]  严永刚, 李玉宝, 汪建新, 等.聚酰胺66/羟基磷灰石复合材料的制备及性能研究[J].塑料工业, 2000, 28(3): 38-40. Yan Yonggang, Li Yubao, Wangjianxin, et al.Study on preparation and properties of polyamide 66/nano-apatite composites[J].China Plastics Industry, 2000, 28(3): 38-40.
[7]  蒋电明, 权正学, 欧云生, 等.n-HA/PA66复合生物活性支撑材料在重建椎体结构中的初步临床应用[J].重庆医学, 2007, 36(11): 1010-1012. Jiang Dianming, Quan Zhengxue, Ou Yunsheng, et al.Initial clinical research of biomimetic and supportive n-HA/PA66 composites for structural reconstruction of vertebral body in spine[J].Chongqing Medicine, 2007, 63(11): 1010-1012.
[8]  王群波, 蒋电明, 安洪, 等.纳米羟基磷灰石/聚酰胺66复合人工椎体在胸腰椎骨折中的应用[J].中华创伤杂志, 2005, 21(9): 690-692. Wang Qunbo, Jiang Dianming, An Hong, et al.Application of nano-hydroapatic crystals and polymide composite for artificial vertebrae in treating thoracic or lumbar vertebrae fractures[J].Chinese Journal of Trauma, 2005, 21(9): 690-692.
[9]  杨曦, 宋跃明, 孔清泉, 等.纳米羟基磷灰石/聚酰胺66椎间融合器植骨融合治疗下腰椎退变疾病的近期疗效[J].中国修复重建外科杂志, 2012, 26(12): 1420-1424. Yang Xi, Song Yueming, Kong Qingquan, et al.Short-term effectiveness of nano-hydroxyapatite/polyamide-66 intervertebral cage for lumbar interbody fusion in patients with lower lumbar degenerative diseases[J].Chinese Journal of Reparative and Reconstructive Surgery, 2012, 26(12): 1420-1424.
[10]  陈抒天, 李鸿, 郝新彦, 等.石英纤维/纳米羟基磷灰石/聚酰胺66复合生物材料的制备和性能[J].材料研究学报, 2013, 27(1): 32-36. Chen Shutian, Li Hong, Hao Xinyan, et al.Preparation and properties of QF/n-HA/PA66 composite biomaterial[J].Chinese Journal of Materials Research, 2013, 27(1): 32-36.
[11]  马建明, 宋诗文, 郭健.新型耐热尼龙[J].现代塑料加工应用, 2003, 15(2): 41-44. Ma Jianmin, Song Shiwen, Guo Jian.New heat resistant polyamide[J].Modern Plastics Processing and Applications, 2003, 15(2): 41-44.
[12]  袁绍彦, 刘奇祥, 叶南飙, 等.耐高温聚酰胺的性能及应用[J].中国塑料, 2009, 23(10): 6-9. Yuan Shaoyuan, Liu Qixiang, Ye Nanbiao, et al.Properties and application of high-temperature resistant polyamide[J].China Plastics, 2009, 23(10): 6-9.
[13]  傅群, 胡祖明, 于俊荣.PA46的性能及其纤维的用途[J].产业用纺织品, 2001, 19(127): 34-36. Fu Qun, Hu Zuming, Yu Junrong.Properties polyamide 46 and application of polyamide 46 fibre[J].Technical Textiles, 2001, 19(127): 34-36.
[14]  Qi G J, Zhang C R, Hu H F, et al.Crystallization behavior of three dimensional silica fiber reinforced silicon nitride composite[J].Journal of Crystal Growth, 2005, 284(1-2): 293-296.
[15]  Chawla N, Tur Y K, Holmes J W, et al.High frequency fatigue behavior of woven fiber reinforced derived ceramic matrix composites[J].Journal of the American Ceramic Society, 1998, 81(5): 1221-1230.
[16]  Li J, Xu B, Feng Z H.Properties of 2.5D braided quartz phenolic composites[J].Aerospace Materials and Technology, 2002, 32(1): 35-37.
[17]  中华人民共和国国家质量监督检验检疫总局.GB/T 16886.5-2003 医疗器械生物学评价[S].北京: 中国标准出版社, 2003. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China.GB/T 16886.5-2003 Biological evaluation of medical devices[S].Beijing: Standards Press of China, 2003.
[18]  王震鸣.复合材料力学和复合材料结构力学[M].北京: 机械工业出版社, 1991: 248-260. Wang Zhenming.Composite material mechanics and composite structural mechanics[M].Beijing: China Machine Press, 1991: 248-260.
[19]  邢建申, 王树彬, 张跃.石英纤维析晶行为[J].复合材料学报, 2006, 23(6): 75-79. Xing Jianshen, Wang Shubin, Zhang Yue.Crystallization of quartz fiber[J].Acta Materiae Compositae Sinica, 2006, 23(6): 75-79.
[20]  张华.现代有机波谱分析[M].北京: 化学工业出版社, 2005: 280-281. Zhang Hua.Modern organic spectral analysis[M].Beijing: Chemical Industry Press, 2005: 280-281.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133