全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

碳纤维形貌结构对其电化学氧化行为及其复合材料界面性能的影响
Influence of carbon fiber morphology structure on electrochemical oxidation behaviors and interfacial properties of its composites

DOI: 10.13801/j.cnki.fhclxb.20141204.002

Keywords: 碳纤维,形貌结构,电化学氧化,复合材料,界面
carbon fiber
,morphology structure,electrochemical oxidation,composite,interface

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过调控原丝工艺, 制备得到形貌结构不同、力学性能相近的PAN基碳纤维(CF), 用以模拟碳纤维表面光滑与沟槽结构对其电化学氧化行为的影响。研究表明: 原始形貌光滑碳纤维在电化学过程中保持形貌能力较强, 相同的电化学氧化强度下, 其表面氧碳比高于原始表面粗糙的碳纤维, 表明其氧化程度高。X射线光电子能谱(XPS)分峰结果表明, 二者表面氧含量差别来自于表面羰基含量的差异。力学性能测试结果表明具有沟槽形貌的碳纤维拉伸强度及拉伸模量提高的幅度较大, 其中拉伸强度提高最大值为17.3%。将氧化前后的碳纤维制备成碳纤维增强树脂基复合材料, 探讨碳纤维形貌结构对其复合材料界面性能的影响。结果表明: 由具有沟槽形貌的碳纤维制备得到的复合材料层间剪切强度(ILSS)较高, 表明碳纤维表面物理形貌也是影响复合材料界面的重要因素。 By regulating spinning process of polyacrylonitrile (PAN) precursor, PAN based carbon fibers (CF) with rough surface and CF with smooth surface were produced, both of which share the same chemical structure as well as similar mechanical property to simulate the influence of surface morphology on the electrochemical oxidation behaviors. Under the same oxidized condition, CF with smooth surface shows a higher morphology resistance, and the O to C ratio is much more than that on CF with rough surface, indicating a higher oxidation degree of the former. XPS spectra reveals that the difference of O to C ratio is probably due to the changes of the relative amount of carbonyl groups on carbon fiber surface. The tensile strength and tensile modulus of CF with rough surface could be improved, however, the tensile strength could be obviously improved to a maximum of 17.3% at the initial stage of electrochemical oxidation. The interlaminar shear strength (ILSS) of carbon fiber reinforced epoxy composite was measured by a fragmentation test, and it is suggested that a better interfacial adhesion could be obtained from rough-surface carbon fiber reinforced epoxy composite, indicating the reinforced mechanism between carbon fiber and epoxy matrix is prone to be anchor force rather than chemical interaction. 国家"973"计划(2011CB605602)

References

[1]  Pittman C U, Jr, Yue Z R, Gandner S, et al. Surface properties of electrochemically oxidized carbon fibers[J]. Carbon, 1999, 37(11): 1797-1807.
[2]  Yue Z R, Jiang W, Wang L, et al. Surface characterization of electrochemically oxidized carbon fibers[J]. Carbon, 1999, 37(11): 1785-1796.
[3]  Cao H L, Huang Y D, Zhang Z Q. Mechanism of surface modification of PAN-based carbon fibers by electrochemical treatment in aqueous ammonium bicarbonate[J]. Acta Materiae Compositae Sinica, 2004, 21(3): 22-27 (in Chinese). 曹海琳, 黄玉东, 张志谦. NH4HCO3 溶液中PAN 基碳纤维电化学改性机理[J]. 复合材料学报, 2004, 21(3): 22-27.
[4]  Wang L Y, Qin Z M, Yang N B, et al. JC/T 773—1982 Test method for interplay shear strength of unidirectional fiber reinforced plasticx[S]. Beijing: National Bureau of Standard, 1983 (in Chinese). 王连玉, 秦志敏, 杨乃宾, 等. JC/T 773—1982 单向纤维增强塑料层间剪切强度试验方法[S]. 北京: 国家标准局, 1983.
[5]  Liu J, Tian Y L, Chen Y J, et al. A surface treatment technique of electrochemical oxidation to simultaneously improve the interfacial bonding strength and the tensile strength of PAN-based carbon fibers[J]. Materials Chemistry and Physics, 2010, 122(2-3): 548-555.
[6]  Song W, Gu A J, Liang G Z, et al. Effect of the surface roughness on interfacial properties of carbon fibers reinforced epoxy resin composites[J]. Applied Surface Science, 2011, 257(9): 4069-4074.
[7]  Ho K K C, Beamson G, Shia G, et al. Surface and bulk properties of severely fluorinated carbon fibres[J]. Journal of Fluorine Chemistry, 2007, 128(11): 1359-1368.
[8]  Carol J. Effects of electrochemical and plasma treatments on carbon fibre surfaces[J]. Surface and Interface Analysis, 1993, 20(5): 357-367.
[9]  Chand S. Review carbon fibers for composites[J]. Journal of Materials Science, 2000, 35(1): 1313-1317.
[10]  Dai Z S, Zhang B Y, Shi F, et al. Effect of heat treatment on carbon fiber surface properties and fibers/epoxy interfacial adhesion[J]. Applied Surface Science, 2011, 257(20): 8457-8461.
[11]  Liu J, Tian Y L, Liang J Y, et al. A surface treatment technique of electrochemical oxidation to simultaneously improve the interfacial bonding strength and the tensile strength of PAN-based carbon fibers[J]. Materials Chemistry and Physics, 2010, 122(2-3): 548-555.
[12]  He F. Carbon fiber and graphite fiber[M]. Beijing: Chemistry Industry Press, 2010: 290-300 (in Chinese). 贺福. 碳纤维及石墨纤维[M]. 北京: 化学工业出版社, 2010: 290-300.
[13]  Wang J B, Li Z R, Wang X Q, et al. The character of electrochemically oxidized carbon fibers with different graphite structures[J]. Journal of Beijing University of Chemical Technology: Natural Science Edition, 2012, 39(5): 64-68 (in Chinese). 王建彬, 李昭锐, 王小谦, 等. 不同石墨化程度碳纤维表面电化学氧化特征研究[J]. 北京化工大学学报: 自然科学版, 2012, 39(5): 64-68.
[14]  Wang C Z, Yang X P, Yu Y H, et al. Study on the mechanism of electrochemical oxidized pitch-based carbon fiber by XPS and AFM[J]. Acta Materiae Compositae Sinica, 2002, 19(5): 28-32 (in Chinese). 王成忠, 杨小平, 于运花, 等. XPS, AFM 研究沥青基碳纤维电化学表面处理过程的机理[J]. 复合材料学报, 2002, 19(5): 28-32.
[15]  Guo Y X, Liu J, Liang J Y. Effect of electrochemical modification on the surface state of PAN-based carbon fibers[J]. Acta Materiae Compositae Sinica, 2005, 22(3): 49-54(in Chinese). 郭云霞, 刘杰, 梁节英. 电化学改性对PAN 基碳纤维表面状态的影响[J]. 复合材料学报, 2005, 22(3): 49-54.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133