全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

基于Morris方法的纤维复合材料结构件固化均匀性的全局灵敏度分析
Global sensitivity analysis of curing uniformity of fiber composite structures based on Morris method

DOI: 10.13801/j.cnki.fhclxb.20141028.003

Keywords: 复合材料,固化均匀性,影响因素,全局灵敏度,Morris方法
composites
,curing uniformity,influencing factor,global sensitivity,Morris method

Full-Text   Cite this paper   Add to My Lib

Abstract:

纤维增强树脂基复合材料结构件的残余应力问题是制约其在航空航天、汽车和建筑领域大规模应用的关键问题。复合材料固化过程中温度场和固化度场的非均匀性是引起残余热应力和固化收缩应力的重要因素。为了探讨纤维复合材料结构件在固化成型过程中固化工艺温度、热传导系数、对流换热系数及结构件厚度对固化均匀性的敏感程度, 采用数值模拟分析了这4个关键参数对温度场和固化度场均匀性的影响规律。模拟结果表明: 升高固化工艺温度, 复合材料温度场的非均匀性增大, 固化度场的非均匀性减小;增大对流换热系数和热传导系数, 复合材料温度场和固化度场的非均匀性减小;增加复合材料结构件的厚度, 复合材料温度场和固化度场的非均匀性增大。在此基础上, 应用Morris全局灵敏度分析方法对4个关键参数对复合材料固化均匀性的影响程度进行定量分析, 得到固化均匀性的影响因素按灵敏程度由大到小的顺序为:结构件厚度、热传导系数、固化工艺温度、对流换热系数。 Residual stress problem in fiber reinforced resin matrix composite structures is a key issue to restrict their large-scale applications in aerospace, automobile and architecture fields. Non-uniformity of temperature and curing degree fields during curing process of composites is an important factor in causing residual thermal stress and curing shrinkage stress. In view of investigating the sensitive degree of curing process temperature, thermal conductivity coefficient, convective heat transfer coefficient and thickness of structure to curing uniformity during curing process of fiber composite structures, the influence rule of the four key parameters on uniformity of temperature and curing degree fields was analyzed by numerical simulation. The simulation results show that the non-uniformity of the temperature field of composites increases and the non-uniformity of the curing degree field decreases when raising the curing process temperature; the non-uniformity of the temperature and curing degree fields both decrease when increasing convective heat transfer coefficient and thermal conductivity coefficient; the non-uniformity of the temperature and curing degree fields increase when increasing the thickness of composite structure. On these basis, the influence degree of the four key parameters on curing uniformity of composites was quantized by Morris global sensitivity analysis method. The sensitive degree order of curing uniformity corresponding to the four key parameters from high to low is as follows: thickness of structure, thermal conductivity coefficient, curing process temperature, convective heat transfer coefficient. 国家"973"计划(2010CB631102);国家自然科学基金(51173100,51373090);山东省自然科学杰出青年基金(JQ201016);潍坊学院博士科研基金(2013BS08);山东省自然科学基金(ZR2014EL013)

References

[1]  Tavakol B, Roozbehjavan P, Ahmed A, et al. Prediction of residual stresses and distortion in carbon fiber-epoxy composite parts due to curing process using finite element analysis [J]. Journal of Applied Polymer Science, 2013, 128(2): 941-950.
[2]  Li P, Jia Y X. Numerical analysis on the cure-induced deformation of fiber composite laminates[J]. Key Engineering Materials, 2014, 576: 183-187.
[3]  Johnston A, Vaziri R, Poursartip A. A plane strain model for process-induced deformation of laminated composite structures[J]. Journal of Composite Materials, 2001, 35(16): 1435-1469.
[4]  Bogetti T A, Gillespie J W. Process-induced stress and deformation in thick-section thermoset composite laminates[J]. Journal of Composite Materials, 1992, 26(5): 626-660.
[5]  Msallem Y A, Jacquemin F, Boyard N, et al. Material characterization and residual stresses simulation during the manufacturing process of epoxy matrix composites[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(1): 108-115.
[6]  Dong C S. A parametric study on the process-induced deformation of composite T-stiffener structures[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(4): 515-520.
[7]  Wang X X, Jia Y X, Wang C G. Thermal curing induced deformation of fiber composite laminates[J]. Polymers & Polymer Composites, 2012, 20(1-2): 171-175.
[8]  Ding Y Y, Dong S H, Jia Y X. Sensitivity analysis of liquid composite molding processes based on chemorheology[J]. Acta Materiae Compositae Sinica, 2014, 31(1): 49-58 (in Chinese). 丁妍羽, 董抒华, 贾玉玺. 基于化学流变学的复合材料液态模塑成型过程的灵敏度分析[J]. 复合材料学报, 2014, 31(1): 49-58.
[9]  Morris M D. Factorial sampling plans for pre-liminary computational experiments[J]. Tech-nometrics, 1991, 33(2): 161-174.
[10]  Behzad T, Sain M. Finite element modeling of polymer curing in natural fiber reinforced composites[J]. Composites Science and Technology, 2007, 67(7-8): 1666-1673.
[11]  Wang X X, Jia Y X, Cheng C, et al. Numerical analysis of curing reaction and demoulding deformation in resin transfer moulding processes[J]. Polymer Materials Science and Engineering, 2010, 26(9): 151-154 (in Chinese). 王晓霞, 贾玉玺, 程程, 等. 树脂传递模塑工艺的模内固化及复合材料脱模变形[J]. 高分子材料科学与工程, 2010, 26(9): 151-154.
[12]  Jia J F, Yue H, Liu T Y, et al. Global sensitivity analysis of cell signal transduction networks based on Morris method [J]. Computers and Applied Chemistry, 2008, 25(1): 7-10(in Chinese). 贾建芳, 岳红, 刘太元, 等. 基于Morris法的细胞信号转导网络全局灵敏性分析[J]. 计算机与应用化学, 2008, 25(1):7-10.
[13]  Smith E D, Szidarovszky F, Karnavas W J. Sensitivity analysis, a powerful system validation technique[J]. The Open Cybernetics and Systemics Journal, 2008, 2: 39-56.
[14]  Wang X X, Jia Y X, Wang C G. Correlation analysis of heat transfer, cure and mechanical behavior of fiber composite laminates[J]. Polymers & Polymer Composites, 2012, 20(1-2): 89-93.
[15]  Paruggia M. Sensitivity analysis in practice: A guide to assessing scientific models[J]. Journal of the American Statistical Association, 2006, 101(473): 398-399.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133