|
- 2015
新型仿生微纳米界面微量流体输运调控材料
|
Abstract:
生物表面从微纳米层次上已提供给人类一种多级次梯度结构的协同效应机制, 并展现出控制动态浸润性及液体传输的独特能力。基于这种机制, 设计了各种仿生的结构, 开发了制备仿生材料的新技术与方法。并将仿生理念引入到材料的制备中, 通过利用常见的高分子材料、响应高分子材料、掺杂的有机物/无机物复合材料, 可控制备了一系列新型一、二维度仿生微纳米界面材料。这些新型仿生微纳米界面材料从微、纳及宏观层次上体现了优越的浸润性调控功能, 如液滴驱动、水收集、防覆冰等, 其在微流控制、淡水采集、雾水工程、热量传递、浮尘过滤等领域有重要的应用前景。 Biological surfaces endow a multi-gradient collaborative effect from nano-/micro-levels for people, displaying the unique ability to control the dynamic wettability and fluid transport. Based on the multi-gradient mechanism, we designed various kinds of bioinspired or biomimetic structures, and developed the new technology and methods. We introduced the bioinspired concept into the fabrication of materials. By being used the universal polymers, response polymer, organic-inorganic composite materials, the novel bioinspired micro-interface/nano-interface materials in one-or two-dimensions can be controllably fabricated. These novel bioinspired materials display excellent fluid-controlling functions from micro-/nano-levels and macro-level, e.g., driving of droplet, water collection and anti-icing functions, which will bring important application prospect and reference value to micro-fluidics, fresh water acquirement, fog-water engineering, energy transform, dust filter and so on. 国家自然科学基金(21234001,21473007);国家"973"计划(2013CB933000)
[1] | Zheng Y, Gao X, Jiang L.Directional adhesion of superhydrophobic butterfly wings[J]. Soft Matter, 2007, 3(2):178-182. |
[2] | Zheng Y, Han D, Zhai J, et al. In situ investigation on dynamic suspending of microdroplet on lotus leaf and gradient of wettable micro-and nanostructure from water condensation[J]. Applied Physics Letters, 2008, 92(8):84-106. |
[3] | Song C, Zheng Y, Wetting-controlled strategies:from theories to bio-inspiration[J]. Journal of Colloid and Interface Science, 2014, 427(1):2-14. |
[4] | Denny M.The intrigue of the interface[J]. Science, 2008, 320(5878):886. |
[5] | Hou Y, Chen Y, Xue Y, et al. Stronger water hanging ability and higher water collection efficiency of bioinspired fiber with multi-gradient and multi-scale spindle knots[J]. Soft Matter, 2012, 8(44):11236-11239. |
[6] | Tian X, Bai H, Zheng Y M, et al. Bio-inspired heterostructured fibers with bead-on-string to respond the environmental wetting[J]. Advanced Functional Materials, 2011, 21(8):1398-1402. |
[7] | Chen Y, Wang L, Xue Y, et al.Excellent bead-on-string silkworm silk fiber for drop-capturing ability[J], Journal of Materials Chemistry A, 2014, 2(5):1230-1234. |
[8] | Guo P, Zheng Y, Liu C, et al. Directional shedding-off of water on natural/bio-mimetic taper-ratchet array surfaces[J].Soft Matter, 2012, 8(6):1770-1775. |
[9] | Gao X, Jiang L.Water-repellent legs of water striders[J]. Nature, 2004, 432(7013): 36. |
[10] | Zhang J, Wang J, Zhao Y, et al. How does the leaf margin make the lotus surface dry as the lotus leaf floats on water? [J]. Soft Matter, 2008, 4(11):2232-2237. |
[11] | Bai H, Ju J, Sun R, et al.Controlled fabrication and water collection ability of bioinspired artificial spider silks[J]. Advanced Materials, 2011, 23(32):3708-3711. |
[12] | Parker A, Lawrence C. Water capture by a desert beetle[J].Nature, 2001, 414(6859):33-34. |
[13] | Zheng Y, Bai H, Huang Z, et al. Directional water collection on wetted spider silk[J].Nature, 2010, 463(7281):640-643. |
[14] | Omenetto F, Kaplan D.New opportunities for an ancient material[J]. Science, 2010, 329(5991):528-531. |
[15] | Malvadkar N, Hancock M, Sekerogu K, et al. An engineered anisotropic nanofilm with unidirectional wetting properties[J]. Nature Materials, 2010, 9(12):1023-1028. |
[16] | Wheeler T, Stroock A. The transpiration of water at negative pressures in a synthetic tree[J]. Nature, 2008, 455(7210):208-212. |
[17] | Huang Z, Chen Y, Zheng Y, et al. Capillary adhesion of wetted cribellate spider capture silks for larger pearly hanging-drops[J].Soft Matter, 2011, 7(19):9468-9473. |
[18] | Kang E, Jeong G, Choi Y, et al. Digitally tunable physicochemical coding of materials composition and topography in continuous microfibres[J]. Nature Materials, 2011, 10(11):877-883. |
[19] | Hou Y, Chen Y, Zheng Y, et al. Water collection behavior and hanging ability of bioinspired fiber[J].Langmuir, 2012, 28(10):4737-4743. |
[20] | Tian X, Chen Y, Zheng Y, et al.Controlling water capture of bio-inspired fibers with hump structures[J]. Advanced Materials, 2011, 23(46):5486-5491. |
[21] | Bai H, Sun R, Ju J, et al. Large-scale fabrication of bioinspired fibers for directional water collection[J]. Small, 2011, 7(24):3429-3433. |
[22] | Feng S, Hou Y, Chen Y, et al. Water-assisted fabrication of porous bead-on-string fibers[J]. Journal of Materials Chemistry A, 2013, 1(29):8363-8366. |
[23] | Bai H, Tian X, Zheng Y, et al. Direction controlled driving of tiny water drops on bio-inspired artificial spider silks[J]. Advanced Materials, 2010, 22(48):5521-5525. |
[24] | Hou Y, Gao L, Feng S, et al. Temperature-triggered directional motion of tiny water droplets on bioinspired fibers in humidity[J]. Chemical Communications, 2013, 49(46):5253. |
[25] | Chen Y, Xue Y, Jiang L, et al. Bioinspired tilt-angle fabricated structure gradient fibers: micro-drops fast transport in a long-distance[J]. Scientific Reports, 2013, 3(9):2927. |
[26] | Mei H, Luo D, Guo P, et al.Multi-level micro-/nanostructures of butterfly wing adapt low temperature to water repellency[J]. Soft Matter, 2011, 7(22):10569-10573. |
[27] | Guo P, Wen M, Wang L, et al. Strong anti-ice ability as nano-hairs over micro-ratchet structures[J]. Nanoscale, 2014, 6(8):3917-3920. |
[28] | Chen Y, Wang L, Xue Y, et al. Bioinspired spindle-knotted fibers with a strong water-collecting ability from humid environment[J]. Soft Matter, 2012, 8(45):11450-11454. |
[29] | Feng S, Hou Y, Gao C, et al. Photo-controlled water gathering on bio-inspired fibers[J]. Soft Matter, 2013, 9(39):9294-9297. |
[30] | Guo P, Zheng Y, Wen M, et al. Icephobic/anti-icing properties of micro-/nanostructured surfaces[J]. Advanced Materials, 2012, 24(19):2642-2648. |