|
- 2015
壳层厚度对核-壳结构PS-SiO2杂化颗粒压缩弹性模量的影响
|
Abstract:
基于正负电荷间的静电作用制备了具有核-壳结构的聚苯乙烯-氧化硅(PS-SiO2)杂化颗粒, 通过调节正硅酸乙酯的用量对样品的SiO2壳层厚度进行控制。利用原子力显微镜(AFM)在微观尺度上测定杂化颗粒的力-位移曲线, 根据Hertz接触模型和Sneddon接触模型, 考查了SiO2壳层厚度对样品压缩弹性模量的影响。扫描电子显微镜(SEM)和透射电镜(TEM)结果显示, 杂化颗粒中PS内核尺寸为(197±9)nm, 壳层由SiO2纳米颗粒组成, 在本试验范围内杂化颗粒样品的壳厚为11~16 nm。在Hertz接触模型条件下, PS微球的弹性模量为(2.2±0.5) GPa, 其数值略低于PS块体材料。当SiO2壳厚由11 nm增至16 nm时, 杂化颗粒的弹性模量从(4.4±0.6) GPa增至(10.2±1.1) GPa, 其数值明显低于纯SiO2, 且更接近于PS内核。 The core-shell structured hybrid particles with polystyrene (PS) as the core and SiO2 nanoparticle as the shell were synthesized via electrostatic interaction based on the opposite charges. The SiO2 shell thickness of the obtained hybrid particles could be tuned by varying the concentration of tetraethylorthosilicate. The atomic force microscope (AFM) was employed to probe the mechanical properties of the as-prepared samples. The compressive elastic modulus of the sample was measured by analyzing the force curves captured on the particle samples according to the Hertz contact model and Sneddon contact model. As confirmed by scanning electronic microscopy (SEM) and transmission electron microscope (TEM), the size of the PS core is (197±9) nm and the SiO2 shell which is 11-16 nm in thickness in the test is composed of a lot of tiny particles. Under the condition of Hertz contact model, the elastic modulus of the PS microspheres is (2.2±0.5) GPa. The modulus of the PS-SiO2 hybrid particle increases with the increase of the thickness of SiO2 shell. When the shell thickness increases from 11 nm to 16 nm, the elastic modulus of the composite grows from (4.4±0.6) GPa to (10.2±1.1) GPa. The elastic modulus of the composite is much lower than that of the silica, and is more close to the modulus of the PS core. 国家自然科学基金(51205032,51405038);江苏省自然科学基金(BK2012158)
[1] | Zhang L, Wang H, Zhang Z, et al. Preparation of monodisperse polystyrene/silica core-shell nano-composite abrasive with controllable size and its chemical mechanical polishing performance on copper[J]. Applied Surface Science, 2011, 258(3): 1217-1224. |
[2] | Kartsonakis I A, Liatsi P, Daniilidis I, et al. Synthesis, characterization, and antibacterial action of hollow ceria nanospheres with/without a conductive polymer coating[J]. Journal of the American Ceramic Society, 2008, 91(2): 372-378. |
[3] | Chen J, Li C S, Li G W, et al. Preparation and characterization of silica hollow microspheres and tribological behavior[J]. Acta Materiae Compositae Sinica, 2011, 28(5): 46-51 (in Chinese). 陈娟, 李长生, 李国伟, 等.SiO2空心微球的制备表征及摩擦性能[J]. 复合材料学报, 2011, 28(5): 46-51. |
[4] | In P, So H, You S, et al. Monodisperse polystyrene-silica core-shell particles and silica hollow spheres prepared by the St?ber method[J]. Journal of Nanoscience and Nanotechnology, 2009, 9(12): 7224-7228. |
[5] | Hertz H R. On the contact of elastic solids[J]. Journal fur die reine und angewandte Mathematik, 1882, 92: 156-171. |
[6] | Sneddon I N. The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile[J]. International Journal of Engineering Science, 1965, 3(1): 47-57. |
[7] | Wang Y Y, Guo D. The fabrication of PP-nanoparticles monolayer and the measurement of elastic properties[J]. China Surface Engineering, 2010, 23(2): 86-89 (in Chinese). 王元元, 郭 丹. 聚苯乙烯纳米微球单层膜的制备、表征及其力学性能的研究[J]. 中国表面工程, 2010, 23(2): 86-89. |
[8] | Mark J E. Polymer data handbook[M]. Oxford: Oxford University Press, 1999: 830-832. |
[9] | Wachtel E, Lubomirsky I. The elastic modulus of pure and doped ceria[J]. Scripta Materialia, 2011, 65(2): 112-117. |
[10] | Sato K, Yugami H, Hashida T. Effect of rare-earth oxides on fracture properties of ceria ceramics[J]. Journal of Materials Science, 2004, 39(18): 5765-5770. |
[11] | Cook L. Chemical processes in glass polishing[J]. Journal of Non-Crystalline Solids, 1990, 120(1-3): 152-171. |
[12] | Chen M, Zhou S, Wu L M, et al. Preparation of silica-coated polystyrene hybrid spherical colloids[J]. Macromolecular Chemistry and Physics, 2005, 206(18): 1896-1902. |
[13] | Chen M. Preparation and characterization of polymer/SiO2 organic-inorganic nanocomposite sphere[D]. Shanghai: Fudan University, 2006 (in Chinese). 陈敏. 聚合物/SiO2有机-无机纳米复合微球的制备与表征[D].上海: 复旦大学, 2006. |
[14] | Butt H J, Cappella B, Kappl M. Force measurements with the atomic force microscope: Technique, interpretation and applications[J]. Surface Science Reports, 2005, 59 (1-6): 1-152. |
[15] | Krishnan M, Nalaskowski J W, Cook L M. Chemical mechanical planarization: Slurry chemistry, materials, and mech-anisms[J]. Chemical Reviews, 2010, 110 (1): 178-204. |
[16] | Chen Y, Long R W, Chen Z G, et al. Synthesis of PS-core ceria-shell composite abrasive and its application in oxide CMP[J]. Tribology, 2010, 30(1): 9-14 (in Chinese). 陈杨, 隆仁伟, 陈志刚, 等.核-壳结构PS/CeO2复合磨料的制备及其氧化物化学机械抛光性能[J]. 摩擦学学报, 2010, 30(1): 9-14. |
[17] | Mu W, Fu M. Synthesis of non-rigid core-shell structured PS/SiO2 composite abrasives and their oxide CMP performance[J]. Microelectronic Engineering, 2012, 96: 51-55. |
[18] | Armini S, Vakarelaki I U, Whelan C M, et al. Nanoscale indentation of polymer and composite polymer-silica core-shell submicrometer particles by atomic force microscopy[J]. Langmuir, 2007, 23(4): 2007-2014. |
[19] | Chen Y, Mu W B, Lu J X. Determination of elastic moduli of composite PS/CeO2 core-shell microspheres by atomic force microscope[J]. Tribology, 2012, 32(1): 1-7 (in Chinese). 陈杨, 穆为彬, 陆锦霞. 核壳结构PS/CeO2复合微球弹性模量的AFM测定[J]. 摩擦学学报, 2012, 32(1): 1-7. |
[20] | Tan S, Sherman R L, Ford W T. Nanoscale compression of polymer microspheres by AFM[J]. Langmuir, 2004, 20(17): 7015-7020. |
[21] | Chizhik S A, Huang Z, Gorbunov V V, et al. Micromechanical properties of elastic polymeric materials as probed by scanning force microscopy[J]. Langmuir, 1998, 14(10): 2606-2609. |
[22] | Bamber M, Cooke K, Mann A, et al. Accurate determination of Young's modulus and Poisson's ratio of thin films by a combination of acoustic microscopy and nanoindentation[J]. Thin Solid Films, 2001, 398-399: 299-305. |
[23] | Armini S, Whelan C M, Maex K, et al. Composite polymer-core silica-shell abrasive particles during oxide CMP[J]. Journal of the Electrochemical Society, 2007, 154(8): H667-H671. |
[24] | Armini S, Whelan C M, Moinpour M, et al. Composite polymer-core silica-shell abrasives: the effect of the shape of the silica particles on oxide CMP[J]. Journal of the Electrochemical Society, 2008, 155(6): H401-H406. |