|
- 2015
玻纤增强注塑件的均匀化弹性力学参数研究
|
Abstract:
基于均匀化方法, 根据长玻纤增强聚丙烯(LGFR-PP)的微观特征, 建立了非连续长玻纤增强复合材料的代表性体积单元(RVE), 通过有限元方法模拟预测了复合材料的宏观等效弹性力学参数, 与注塑样条拉伸性能测试结果进行了比较。研究表明, 通过在玻纤两侧增加聚丙烯(PP)分布, 所采用的RVE较传统连续纤维的有限元模型更为合理;当玻纤成单一取向时, 玻纤增强聚丙烯为一种横观各向同性材料;改变玻纤取向与拉伸方向之间的角度, 拉伸方向的等效模量先微幅减小, 再迅速降低, 而后趋于稳定。利用均匀化方法预测非连续长玻纤增强注塑件的等效弹性力学性能具有较高的工程可行性, 能进一步为玻纤增强注塑件的结构服役性能分析提供科学依据。 Based on homogenization method, a representative volume element (RVE) of discontinuous long glass fiber reinforced composites was constructed according to the microstructure of the composites. The equivalent elastic mechanical properties of the composites were obtained based on a numerical simulation on the RVE, and were then compared with the experimental data of the tensile properties of injected spline. Numerical results show that it is more reasonable based on the new finite element model built by adding polypropylene(PP) at both ends of glass fiber than on the traditional one which applied on continuous fiber reinforced composites. Glass fiber reinforced polypropylene is transversely isotropic when glass fibers are unidirectional. In addition, the equivalent elastic modulus in the tensile direction first decreases slightly, then drops rapidly, and then turns stable with the increase of the angle between fiber orientation and tensile direction. In conclusion, homogenization theory is very useful for the prediction of the equivalent elastic mechanical properties of discontinuous glass fiber reinforced moldings in engineering, and is significant to provide the scientific evidence for the analysis of structure service performance of the moldings. 国家自然科学基金(11172171,51005151);高校博士点专项科研基金(20100073120058,20130073110054)
[1] | Feng M B. Development and applications of new materials in automotive light weighting technologies [J]. Automotive Engineering, 2006, 28(3): 213-220 (in Chinese). 冯美斌. 汽车轻量化技术中新材料的发展及应用[J]. 汽车工程, 2006, 28(3): 213-220. |
[2] | Dong Q W, Wang Z, Liu M S. Asymptotic homogenization theory for composites: effective mechanics properties [J]. Journal of Materials Science & Engineering, 2008, 26(1): 72-75 (in Chinese). 董其伍, 王哲, 刘敏珊. 渐进均匀化理论研究复合材料有效力学性能[J]. 材料科学与工程学报, 2008, 26(1): 72-75. |
[3] | Liang J, Huang F H, Du S Y. Boundary force method to predict effective elastic properties of periodical unit cell composite material [J]. Acta Materiae Compositae Sinica, 2010, 27(2): 108-112 (in Chinese). 梁军, 黄富华, 杜善义. 周期性单胞复合材料有效弹性性能的边界力方法[J]. 复合材料学报, 2010, 27(2): 108-112. |
[4] | Zheng X X, Zheng X T, Gou L H. The research progress on multi-scale method for the mechanical analysis of composites [J]. Advances in Mechanics, 2010, 40(1): 41-55 (in Chinese). 郑晓霞, 郑锡涛, 缑林虎. 多尺度方法在复合材料力学分析中的研究进展[J]. 力学进展, 2010, 40(1): 41-55. |
[5] | Pan Z M. Research of the effect of interface on the mechanical properties of unidirectional fiber reinforced composites [D]. Harbin: Harbin Institute of Technology, 2010 (in Chinese). 潘自民. 单向复合材料界面对其力学性能影响的研究[D]. 哈尔滨: 哈尔滨工业大学, 2010. |
[6] | Liu W H, Zhang X M, Zhang C Y. Microstructure effect on elastic properties of composite [J]. Engineering Mechanics, 2005, 22(Sup.): 16-19 (in Chinese). 刘文辉, 张新明, 张淳源. 微观结构对复合材料弹性有效性能的影响[J]. 工程力学, 2005, 22(增刊): 16-19. |
[7] | Cheng G D, Cai Y W, Xu L. Novel implementation of homogenization method to predict effective properties of periodic materials [J]. Acta Mechanica Sinica, 2013, 29(4): 550-556. |
[8] | Hassani B, Himton E. A review of homogenization and topology optimization I: homogenization theory for media with periodic structure [J]. Computers and Structures, 1998, 69(6): 707-717. |
[9] | Devries F, Dumontet H, Duvaut G, et al. Homogenization and damage for composite structures[J]. International Journal for Numerical Methods in Engineering, 1989, 27(2): 285-298. |
[10] | Guedes J M, Kikuchi N. Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods[J]. Computer Methods in Applied Mechanics and Engineering, 1990, 83(2): 143-198. |
[11] | Liu S T, Cheng G D. Homogenization-based method for predicting thermal expansion coefficient of composite materials [J]. Journal of Dalian University of Technology, 1995, 35(5): 451-457 (in Chinese). 刘书田, 程耿东. 基于均匀化理论的复合材料热膨胀系数预测方法[J].大连理工大学学报, 1995, 35(5): 451-457. |
[12] | Peng X Q, Cao J. A dual homogeni-zation and finite element approach for material characterization of textile composites [J]. Composites Part B: Engineering, 2002, 33(1): 45-56. |
[13] | Hassani B, Himton E. A review of homogenization and topology optimization II: analytical and numerical solution of homogenization equations [J]. Computers and Structures, 1998, 69: 719-738. |
[14] | International Organization for Standardization. ISO527-2: 2012 Plastics—Determination of tensile properties—Part 2: Test conditions for moulding and extrusion plastics[S].[s.l.]: ISO Technical Committee, 2012. |
[15] | Jiao G Q, Xia P R. Mechanics of composite materials [M]. Xi'an: Northwestern Polytechnical University Press, 2008 (in Chinese). 矫桂琼, 夏普荣. 复合材料力学[M]. 西安: 西北工业大学出版社, 2008. |
[16] | Qin J S, Peng X Q, Shen J, et al. Tensile properties of glass fiber reinforced PP composite considering fiber orientations [J]. Acta Materiae Compositae Sinica, 2013, 30(4): 53-58 (in Chinese). 秦计生, 彭雄奇, 申杰, 等. 考虑纤维方向分布的玻纤增强PP复合材料拉伸性能[J]. 复合材料学报, 2013, 30(4): 53-58. |
[17] | Xie G L, Zhang P, Cao W N, et al. Homogenization-based method for predicting effective properties of polymer matrix composites toughened and strengthened by particles[J]. Natural Science Journal of Xiangtan University, 2005, 27(1): 55-60 (in Chinese). 谢桂兰, 张平, 曹尉南, 等. 基于均匀化方法的颗粒增韧增强聚合物基复合材料有效性能预测[J]. 湘潭大学自然科学学报, 2005, 27(1): 55-60. |