全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

丝束变角度层合板屈曲性能的参数化研究
Parametric study on buckling property of variable angle tow laminates

DOI: 10.13801/j.cnki.fhclxb.20141105.004

Keywords: 丝束变角度层合板,屈曲,纤维轨迹,纤维轨迹特征长度,定向坐标系偏角
variable angle tow laminate
,buckling,fiber path,fiber path characteristic distance,directional coordinate rotation

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过选择合适的纤维轨迹, 丝束变角度(VAT)层合板相对于直纤维层合板能拥有更好的抗屈曲特性。为研究纤维轨迹特征长度和定向坐标系偏角对VAT层合板屈曲性能的影响, 首先对原始的纤维角度线性变化方法进行改进, 提出了一种纤维角度分段线性变化方法, 拓展了纤维轨迹的设计空间;其次, 采用改进后的纤维轨迹定义方法构建了一系列变刚度层合板;最后, 基于有限元方法, 从内力分布角度对变刚度层合板不同承载情况下的屈曲性能进行研究和探讨。数值结果表明:单向轴压工况下, 采用半边长的特征长度和90°偏角的纤维轨迹, 能使层合板的稳定性最好;双向轴压工况下, 应将特征长度和定向坐标系偏角作为额外的设计变量, 并通过优化获得最优的纤维轨迹。 With suitable fiber path, variable angle tow (VAT) laminate is superior to traditional straight fiber laminate in buckling resistance. The aim of this paper is to trace the influence of fiber path characteristic distance and directional coordinate rotation on buckling property of VAT laminates. The original method for linear vibration of fiber angle was improved, and a method for describing the piecewise linear variation of fiber angle was proposed, which is able to extend the design space of fiber path. A series of VAT laminates were fabricated utilizing the improved method. Based on the finite element method, the buckling properties of VAT laminates under different load cases were traced and discussed from the perspective of the stress resultant distribution. The numerical results show that under the axial compression condition, the fiber path with the characteristic distance being half of the edge length and the coordinate rotation being 90°, makes laminates of the highest stability; under the biaxial compression condition, the characteristic distance and directional coordinate rotation should be treated as extra design variables, and the optimal fiber path should be obtained through optimization. 国家自然科学基金(11402204)

References

[1]  Kuo S Y. Flutter of rectangular composite plates with variable fiber spacing[J]. Composite Structures, 2011, 93(10): 2533-2540.
[2]  Murugan S, Flores E I S, Adhikari S, et al. Optimal design of variable fiber spacing composites for morphing aircraft skins[J]. Composite Structures, 2012, 94(5): 1626-1633.
[3]  Shi S, Sun Z, Ren M, et al. Buckling resistance of grid-stiffened carbon-fiber thin-shell structures[J]. Composites Part B: Engineering, 2013, 45(1): 888-896.
[4]  Sliseris J, Rocens K. Optimal design of composite plates with discrete variable stiffness[J]. Composite Structures, 2013, 98: 15-23.
[5]  Lopes C S, Camanho P P, Gürdal Z, et al. Progressive failure analysis of tow-placed, variable-stiffness composite panels[J]. International Journal of Solids and Structures, 2007, 44(25-26): 8493-8516.
[6]  Lopes C S, Gürdal Z, Camanho P P. Variable-stiffness composite panels: buckling and first-ply failure improvements over straight-fibre laminates[J]. Computers and Structures, 2008, 86(9): 897-907.
[7]  Alhajahmad A, Abdalla M M, Gürdal Z. Optimal design of tow-placed fuselage panels for maximum strength with buckling considerations[J]. Journal of Aircraft, 2010, 47(3): 775-782.
[8]  Liu W L, Butler R. Buckling optimization of variable-angle-tow panels using the infinite-strip method[J]. AIAA Journal, 2013, 51(6): 1442-1449.
[9]  Groh R M J, Weaver P M. Buckling analysis of variable angle tow, variable thickness panels with transverse shear effects[J]. Computer Structures, 2014, 107: 482-493.
[10]  Alhajahmad A, Abdalla M M, Gürdal Z. Design tailoring for pressure pillowing using tow-placed steered fibers[J]. Journal of Aircraft, 2008, 45(2): 630-640.
[11]  Wu Z, Weaver P M, Raju G, et al. Buckling analysis and optimisation of variable angle tow composite plates[J]. Thin-Walled Structures, 2012, 60: 163-172.
[12]  Nagendra S, Kodiyalam S, Davis J E, et al. Optimization of tow fiber paths for composite design, AIAA-1995-1275-CP[R]. Reston: AIAA, 1995.
[13]  Blom A W, Abdalla M M, Gürdal Z. Optimization of course locations in fiber-placed panels for general fiber angle distributions[J]. Composites Science and Technology, 2010, 70(4): 564-570.
[14]  Gürdal Z, Tatting B F. Tow-placement technology and fabrication issues for laminated composite structures, AIAA-2005-2017[R]. Reston: AIAA, 2005.
[15]  Tatting B, Gürdal Z. Design and manufacture of elastically tailored tow placed plates, NASA CR-2002-211919[R]. Washington, D.C.: NASA, 2002.
[16]  Gürdal Z, Tatting B F, Wu C K. Variable stiffness composite panels: effects of stiffness variation the in-plane and buckling response [J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(5): 911-922.
[17]  Raju G, Wu Z, Kim B C, et al. Prebuckling and buckling analysis of variable angle tow plates with general boundary conditions[J]. Composite Structures, 2012, 94(9): 2961-2970.
[18]  IJsselmuiden S T. Optimal design of variable stiffness composite structures using lamination parameters[D]. Delft: Delft University of Technology, 2012.
[19]  Zein S, Colson B, Grihon S. A primal-dual backtracking optimization method for blended composite structures[J]. Structural Multidisciplinary Optimization, 2012, 45(5): 669-680.
[20]  Liu D, Toropov V V. A lamination parameter-based strategy for solving an integer-continuous problem arising in composite optimization[J]. Computers and Structures, 2013, 128: 170-174.
[21]  Ribeiro P, Akhavan H, Teter A, et al. A review on the mechanical behaviour of curvilinear fibre composite laminated panels[J]. Journal of Composite Materials, 2013, doi:10.1177/0021998313502066.
[22]  Waldhart C. Analysis of tow-placed, variable-stiffness laminates[D]. Blacksburg, VA: Virginia Polytechnic Institute and State University, 1996.
[23]  Hyer M W, Charette R F. The use of curvilinear fiber format in composite structure design[J]. AIAA Journal, 1991, 29(6): 1011-1015.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133