|
- 2015
复合材料机身结构件冲击模拟与吸能特性研究
|
Abstract:
对具有吸能子地板的全复合材料机身结构进行了垂直向7.9 m/s的抗坠毁数值模拟, 得到平均加速度、速度及撞击载荷值等动态冲击参数, 考虑采用不同的评价方法来评估其抗坠毁特性。并对全复合材料机身结构进行分块设计, 考虑在冲击过程中起关键作用的底部结构中加入吸能泡沫, 最后利用专业的瞬态动力学软件对有限元设计模型进行了冲击模拟, 并与测试结果进行了比较, 结果满足抗坠毁设计相应规范要求。计算得到的平均加速度不超过13g, 其相对误差不大于11%, 撞击载荷最大不超过6 kN, 坠毁平均负加速度持续时间不超过0.03 s, 结果较合理。 利用本模型可以指导直升机的抗坠毁设计。 After the 7.9 m/s vertical drop anti-crash simulation of a full scale composite fuselage structure with energy-absorbing subfloor, the corresponding dynamic impact parameters of the average acceleration, velocity and impact force of the structure were obtained. Different assessment methods were considered to evaluate the crashworthiness characteristics of the structure. The full scale composite fuselage structure was divided into different sections in the design, and the energy-absorbing foam was added into the bottom structure of the fuselage section. The calculated results indicate that the crashworthiness design can meet the corresponding specifications. The impact simulation was carried out using the professional nonlinear explicit transient dynamic finite element software. Compared with the test results, the calculated average acceleration does not exceed 13g, with the relative error being less than 11%. The maximum vertical impact load is less than 6 kN, and the persistent time of the average minus acceleration of crash is not more than 0.03 s. All these results are reasonable. The model can be used for the anti-crash design of the helicopter. 国家"973"计划(2011CB606105)
[1] | Ren Y R, Xiang J W, Luo Z P, et al. Crashworthiness analysis and design of aircraft fuselage structure[J]. Engineering Mechanics, 2013, 30(10): 296-304 (in Chinese). 任毅如, 向锦武, 罗漳平, 等. 飞行器机身结构耐撞性分析与设计[J]. 工程力学, 2013, 30(10): 296-304. |
[2] | Carruthers J J, Kettle A P, Robinson A M. Energy absorption capability and crashworthiness of composite material structures[J]. Applied Mechanics Reviews, 1998, 51(10): 635-649. |
[3] | You Z X, Gong Y N, Zhang J D, et al. GJB 2681—1996 Military helicopter crash-resistance requirements[S]. Beijing: Civil Aviation Administration of China, 1996 (in Chinese). 游中校, 龚尧南, 张近东, 等. GJB2681—1996军用直升机抗坠毁要求[S]. 北京: 中国民用航空总局, 1996. |
[4] | Hu D Y, Yang J L, Hu M H. Full-scale vertical drop test and numerical simulation of a crashworthy helicopter seat/occupant system[J]. International Journal of Crashworthiness, 2009, 14(6): 565-583. |
[5] | Beheshti H K, Lankarani H M. A simplified test methodology for crashworthiness evaluation of aircraft seat cushions[J]. International Journal of Crashworthiness, 2006, 11(1): 27-35. |
[6] | Celal E, Müfit G. An experimental investigation on the impact response of composite materials[J]. International Journal of Impact Engineering, 2012, 43 (5): 40-51. |
[7] | Marco A, Luigi-Maria L. Castelletti, et al. Survey of numerical approaches to analyse the behavior of a composite skin panel during a water impact[J]. International Journal of Impact Engineering, 2014, 63(1): 43-51. |
[8] | Zhang T, Li S, Jiang X, et al. Analysis model and numeral simulation for civil plane ditching[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2010, 42(3): 392-394 (in Chinese). 张韬, 李书, 江翔, 等. 民用飞机水上迫降分析模型和数值仿真[J]. 南京航空航天大学学报, 2010, 42(3): 392-394. |
[9] | Randhawa H S, Lankarani H M. Finite element analysis of impacts on water and its application to helicopter water landing and occupant safety[J]. International Journal of Crashworthiness, 2003, 8(2): 189-200. |
[10] | Edwin L F, Karen E J. Impact testing and simulation of a crashworthy composite fuselage section with energy-absorbing seats and dummies, NASA/TM-2002-211731 ARL-TR-2734[R]. Washington, D. C.: NASA, 2002. |
[11] | Ding C Q, Li B G, Ma D W. Study of crash proof lifesaving technology of armed helicopter[J]. Journal of Naval Aeronautical Engineering Institute, 2005, 20(5): 547-550 (in Chinese). 丁春全, 李保刚, 马登武. 武装直升机抗坠毁救生技术[J]. 海军航空工程学院学报, 2005, 20(5): 547-550. |
[12] | U.S. Army Aviation Systems Command. Military specification MIL-S-58095A (AV), Seat system: Crash-resistant, non-ejection, aircrew, general specification for use[S]. Washington, D.C.: Department of Defense, 1986. |
[13] | Farley G L, Jones R M. Analogy for the effect of material and geometrical variables on energy-absorption capability of composite tubes[J]. Journal of Composite Materials, 1992, 26(1): 78-89. |
[14] | Rahul S S, Velmurugan R, Gupta N K. Influence of fiber orientation and thickness on the response of glass/epoxy composites subjected to impact loading[J]. Composites:Part B, 2014, 60 (4): 627-636. |
[15] | Rasoul N, Ali R S. Study of foam density variations in composite sandwich panels under high velocity impact loading[J]. International Journal of Impact Engineering, 2014, 63(1): 129-139. |
[16] | Luo C, Liu H, Yang J L, et al. Simulation and analysis of crashworthiness of fuel tank for helicopters[J]. Chinese Journal of Aeronautics, 2007, 20(3): 230-235. |
[17] | Karen E J, Edwin L F. Crashworthy model evaluation of a 1/5-scale composite fuselage concept, NASA/TM-1999-209132 ARL-MR-441[R]. Washington, D. C. : NASA, 1999. |