|
- 2015
静电植绒法处理多壁碳纳米管改性玻纤织物/环氧树脂复合材料的制备及力学性能
|
Abstract:
为提高玻纤增强环氧树脂复合材料的力学性能,采用静电植绒法将多壁碳纳米管(MWCNTs)附着在玻纤织物表面, 得到改性的玻纤织物。利用一种低黏度的环氧树脂和所制得的改性织物, 采用真空辅助成型工艺(VARI)制备了MWCNTs改性格玻纤织物/环氧树脂复合材料层合板, 表征了层合板的力学性能。对进行力学实验后的MWCNTs改性玻纤织物/环氧树脂复合材料试样断口进行了SEM和OPM观察。结果显示:与未添加MWCNTs的玻纤织物/环氧树脂复合材料层合板相比, 添加了MWCNTs的层合板的拉伸强度降低了10.24%, 弯曲强度降低了13.90%, 压缩强度降低了17.33%, 拉伸模量和弯曲模量分别提高了19.38%和16.04%, 压缩模量提高了13%;MWCNTs与玻纤织物之间的结合较弱, 在拉伸作用下, 存在明显的脱粘和分层;将改性玻纤织物在200 ℃下热压处理2 h后, 制备的MWCNTs改性玻纤织物/环氧树脂复合材料层合板的力学性能均有所提高, 热压处理后树脂与玻纤织物之间的界面结合得到改善。 In order to improve the mechanical properties of glass fiber reinforced epoxy composites, multi-walled carbon nanotubes (MWCNTs) were attached to glass fiber fabrics surface using electrostatic flocking method to get modified glass fiber fabrics. The MWCNTs modified glass fiber fabrics/epoxy composite laminates were prepared using method of vacuum assisted resin infusion (VARI) with low-viscosity epoxy and the prepared modified fabrics. The mechanical properties of the laminates were characterized. The fracture surfaces of the MWCNTs modified glass fiber fabrics/epoxy composite specimens after mechanical experiments were observed by SEM and OPM. The results show that compared with the unmodified glass fiber fabrics/epoxy composite laminates without MWCNTs, the tensile strength of MWCNTs modified laminates decreases by 10.24%, flexural strength decreases by 13.90%, and compressive strength decreases by 17.33%. The tensile modulus and flexural modulus improve by 19.38% and 16.04% respectively, while compressive modulus increases by 13%. The bondings between MWCNTs and glass fiber fabrics are weak and there are debondings and delaminations between them under tensile loading. After the modified glass fiber fabrics treated by hot pressing at 200 ℃ for 2 h, the mechanical properties of MWCNTs modified glass fiber fabrics/epoxy composite laminates increase. The interface bondings between resin and glass fiber fabrics is improved after hot pressing treatment. 国家"863"计划(2012AA03A202)
[1] | Li X P, Zhang X P, Wang H W.Progress in development and application of carbon fiber[J].Hi-Tech Fiber & Application, 2005, 30(5): 24-30 (in Chinese). 黎小平, 张小平, 王红伟.碳纤维的发展及其应用现状[J].高科技纤维与应用, 2005, 30(5): 24-30. |
[2] | Iijima S.Helical microtubules of graphite[J].Nature, 1991, 354(2): 56-58. |
[3] | Montazeri A, Javadpour J, Khavandi A, et al.Mechanical properties of multi-walled carbon nanotube/epoxy composites[J].Materials and Design, 2010, 31(9): 4202-4208. |
[4] | Rahmanian S, Thean K S, Suraya A, et al.Carbon and glass hierarchical fibers: Influence of carbon nanotubes on tensile, flexural and impact properties of short fiber reinforced composites[J].Materials & Design, 2013, 46(10): 10-16. |
[5] | Khan S U, Pothnis J R, Kim J K.Effects of carbon nanotube alignment on electrical and mechanical properties of epoxy nanocomposites[J].Composites Part A: Applied Science and Manufacturing, 2013, 49: 26-34. |
[6] | Martin C A, Sandler J K W, Windle A H, et al.Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites[J].Polymer, 2005, 46(3): 877-886. |
[7] | Boccaccini, Cho A R J, Roether J A, et al.Electrophoretic deposition of carbon nanotubes[J].Carbon, 2006, 44(15): 3149-3160. |
[8] | Su S.Preparation of PVDF thin film by electrospray and the research of gas sensing properties[D]. Chengdu: University of Electronic Science and Technology of China, 2009 (in Chinese). 苏妤.静电喷雾法制备PVDF薄膜及气敏特性研究[D].成都: 电子科技大学, 2009. |
[9] | Du C, Yeh J, Pan N.Carbon nanotube thin films with ordered structures[J].Material Chemistry, 2005, 15: 548-550. |
[10] | An Q, Rider A N, Thostenson E T, et al.Hierarchical composite structures prepared by electrophoretic deposition of carbon nanotubes onto glass fibers[J].ACS Applied Materials & Interfaces, 2013, 5(6): 2022-2032. |
[11] | Thostenson E T, Chou T W.Processing-structure-multifunctional property relationship in carbon nanotube/epoxy composites[J].Carbon, 2006, 44: 3022-3029. |
[12] | Zhao Y W, Gu Y Z, Li M, et al. Double vacuum assisted resin infusion molding and property of carbon nanotube glass fiber/epoxy resin laminates[J]. Acta Materiae Compositae Sinica, 2011, 28(3): 13-19 (in Chinese). 赵艳文, 顾轶卓, 李敏, 等.碳纳米管-玻璃纤维/环氧层板双真空灌注工艺及性能[J].复合材料学报, 2011, 28(3): 13-19. |
[13] | Salvetat J P, Briggs G A D, Bonard J M, et al.Elastic and shear moduli of single-walled carbon nanotube ropes[J].Physical Review Letters, 1999, 82(5): 944-947. |
[14] | Garcia E, Wardle B, Johnhar A.Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown in situ[J].Composites Science and Technology, 2008, 68(9): 2034-2041. |
[15] | Liu X H.Overview of the comparison of CBF (continuous basalt fiber) with CF(carbon fiber), AF(aramid fiber)and GF(glass fiber) and their properties[J].Shanxi Science and Technology, 2014, 29(1): 87-90 (in Chinese). 刘学慧.连续玄武岩纤维与碳纤维、芳纶、玻璃纤维的对比及其特性概述[J].山西科技, 2014, 29(1): 87-90. |
[16] | Wang H F, Li Z H, Wang X Q, et al.Preparation and mechanical properties of carbon nanotubes/resin epoxy composite[J].Acta Materiae Compositae Sinica, 2004, 21(5): 48-51 (in Chinese). 汪华锋, 李振华, 王新庆, 等.纳米碳管/环氧树脂复合材料的制备及力学性能[J].复合材料学报, 2004, 21(5): 48-51. |
[17] | Gojny F H, Wichmann M H G, Fiedler B, et al.Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites—A comparative study[J].Composites Science and Technology, 2005, 65(15-16): 2300-2313. |
[18] | Zhu L L, Gu Y Z, Sun Z J, et al.Effects of dispersing methods on the properties of low content of carbon nanotubes-glass fiber/epoxy resin laminates [J].Acta Materiae Compositae Sinica, 2012, 29(5): 11-17 (in Chinese). 朱莉莉, 顾轶卓, 孙志杰, 等.分散方法对低含量碳纳米管-玻纤/环氧层板性能的影响[J].复合材料学报, 2012, 29(5): 11-17. |
[19] | Gojny F H, Wichmann M H G, K?pke U, et al.Carbon nanotube-reinforced epoxy-composites: Enhanced stiffness and fracture toughness at low nanotube content[J].Composites Science and Technology, 2004, 64(15): 2363-2371. |