全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

1500℃高温氧化环境下C/SiC复合材料结构的热/力联合试验
Thermal-mechanical joint test of C/SiC composite structure in high-temperature/oxidation environment up to 1 500 ℃

DOI: 10.13801/j.cnki.fhclxb.20150428.001

Keywords: 超高温环境,复合材料,热/力联合试验,热强度,高超声速飞行器
ultra-high temperature environment
,composites,thermal-mechanical joint test,thermal strength,hypersonic flight vehicles

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对高超声速飞行器新型超高温结构力/热/氧化关键性能参量试验测试的迫切需求, 自行设计并建立了可实现在高达1 500 ℃极端高温氧化环境下进行结构断裂性能测试的辐射式热/力联合试验系统, 并对耐高温C/SiC复合材料结构在1 500 ℃等高温氧化环境下的断裂强度以及出现断裂时的时间点等关键性能参数进行了试验测试, 当试验温度从1 000 ℃上升至1 500 ℃, C/SiC复合材料试验件的断裂强度下降了47.5%, 断裂时间缩短50.1%。本极端高温载荷试验系统为高超声速飞行器结构热强度研究提供了重要的氧化环境下的热/力联合试验测试手段。研究结果表明:通过高温预加载可以明显提高C/SiC复合材料结构的断裂强度, 增幅为38%, 承载时间提高61.1%。试验结果为高超声速飞行器复合材料部件在极端热环境下的安全可靠性设计以及强度性能的改进提供了重要依据。 In order to satisfy the urgent demand to test the mechanics/thermal/oxidization key performance parameters for new ultra-high temperature structures of hypersonic flight vehicles, a self-designed radiation type thermal-mechanical joint test system that can perform fracture property test of structures under extremely high-temperature/oxidization environment up to 1 500 ℃ was established. By using this system, key performance parameters, such as fracture strength and fracture time, for C/SiC high-temperature-resistant composite material were tested in high-temperature/oxidization environments up to 1 500 ℃. The results show that the C/SiC specimen's fracture load decreases 47.5% when the temperature rises from 1 000 ℃ to 1 500 ℃, and the time to failure reduces to 50.1% of that at 1 000 ℃. This extreme high-temperature experimental system provides important test method for thermal-mechanical research on thermal strength of structures in oxidization environments. In this thermal-mechanical test, the phenomenon that the preloading process in high temperatures can increase the fracture strength obviously for C/SiC composite structure is observed, and the fracture strength increases by 38% and the time to failure increases by 61.1%. The results provide important basis for the safety and reliability design as well as improvements of material strength properties of composite structures for hypersonic flight vehicles under extreme thermal environments. 国家自然科学基金(11427802,11172026);高等学校博士学科点专项科研基金(20131102110014)

References

[1]  Alida B, Frederic M, Diletta S. Fast densification of ultra-high-temperature ceramics by spark plasma sintering [J]. International Journal of Applied Ceramic Technology, 2006, 3(1): 32-40.
[2]  Abdel H, Hrishikesh A B, James R N, et al. Tensile testing of materials at high temperatures above 1 700℃ with in situ synchrotron X-ray micro-tomography [J]. Review of Scientific Instruments, 2014, 85(8): 083702.
[3]  Pichon T, Barreteau R, Soyris P, et al. CMC thermal protection system for future reusable launch vehicles: Generic shingle technological maturation and tests [J]. Acta Astronautica, 2009, 65(1-2): 165-176.
[4]  Zhang Y N, Zhang L T, Cheng L F, et al. Tensile behavior and microstructural evolution of carbon/silicon carbide composite in simulated re-entry environments [J]. Materials Science and Engineering: A, 2008, 473(1-2):111-118.
[5]  Zhang W, Lv S L, Lv Y, et al. Research of tensile performance of 2D weave C/SiC composites at high temperature [J]. Structure & Environment Engineering, 2009, 36(1): 22-26 (in Chinese). 张伟, 吕胜利, 吕毅, 等. 二维编制C/SiC复合材料高温拉伸性能研究[J]. 强度与环境, 2009, 36(1): 22-26.
[6]  National Natural Science Foundation of China. The 2012 project guide of major research plan on the basic research program of near space vehicle (2012-05-24) [EB/OL]. http://www.nsfc.gov.cn/publish/portal0/zdyjjh/2012/info24371.htm (in Chinese). 国家自然科学基金委员会. "近空间飞行器的关键基础科学问题"重大研究计划2012年度项目指南(2012-05-24) [EB/OL]. http://www.nsfc.gov.cn/publish/portal0/zdyjjh/2012/info24371.htm
[7]  Kalluri S, Calomino A M, Brewer D N. High temperature tensile properties and fatigue behavior of a melt-infiltrated SiC/SiC composite, NASA 20020073442 [R]. Washington, D. C. : NASA, 2002.
[8]  Zhou P, Jia P R, Pan W G. Study of T300/BMP350 composite tensile mechanical behavior at elevated temperature [J]. Journal of Experimental Mechanics, 2014, 29(5): 549-555(in Chinese). 周平, 贾普荣, 潘文革. 高温环境下T300/BMP350拉伸力学行为研究[J].实验力学, 2014, 29(5): 549-555.
[9]  Sung R C, Narottam P B, Michael J V. Delayed failure of ceramic matrix composites in tension at elevated temperatures [J]. Journal of the European Ceramic Society, 2005, 25(9): 1629-1636.
[10]  Mei H, Cheng L F, Zhang L T, et al. Effect of temperature gradients and stress levels on damage of C/SiC composites in oxidizing atmosphere [J]. Materials Science and Engineering: A, 2006, 430(1): 314-319.
[11]  Larry H, Craig S. Thermal-mechanical testing of hypersonic vehicle structures [C]//Hypersonics/MURI Review Meeting. Reston: AIAA, 2007.
[12]  Wu D F, Wu S, Wang Y W, et al. High-speed and accurate non-linear calibration of temperature sensors for transient aerodynamic heating experiments [J]. Transactions of the Institute of Measurement and Control, 2014, 36(6): 845-852.
[13]  Wu D F, Wang Y W, Pan B, et al. Experimental research on the ultimate strength of hard aluminum alloy 2017 subjected to short-time radioactive heating [J]. Materials and Design, 2012, 40: 502-509.
[14]  Wu D F, Zhou A F, Zheng L M, et al. Thermal protection performances of metallic honeycomb panel structure at transient thermal shock environment [J]. Journal of Aerospace Power, 2014, 29(6): 1261-1271 (in Chinese). 吴大方, 周岸峰, 郑力铭, 等. 瞬态热冲击环境下金属蜂窝板结构的热防护特性 [J]. 航空动力学报, 2014, 29(6): 1261-1271.
[15]  Wu D F, Zhao S G, Pan B, et al. Experimental study on high temperature thermal-vibration characteristics for hollow wing structure of high-speed flight vehicles [J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4):598-605 (in Chinese). 吴大方, 赵寿根, 潘兵, 等. 高速飞行器中空翼结构高温热振动特性试验研究 [J]. 力学学报, 2013, 45(4): 598-605.
[16]  Earl T. Thermal structures for aerospace applications [M]. Reston: AIAA, 1996: 1-9.
[17]  Narottam P B. Handbook of ceramic composites [M]. Boston: Kluwer Academic Publishers, 2005: 117-148.
[18]  David E G. Ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicles [C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008: 1-36.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133