全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

水灰比对PVA纤维增强水泥基复合材料性能和显微结构的影响
Effects of water/cement ratio on properties and microstructure of PVA fiber reinforced cementitious composites

DOI: 10.13801/j.cnki.fhclxb.20141031.002

Keywords: PVA纤维水泥基复合材料,水灰比,裂缝,纤维增强,纤维增韧,界面显微结构
polyvinyl alcohol (PVA) fiber reinforced cementitious composites
,water/cement ratio,cracks,fiber reinforced,fiber toughening,interface microstructure

Full-Text   Cite this paper   Add to My Lib

Abstract:

对3种不同水灰比(0.2, 0.4, 0.65)形成的聚乙烯醇(PVA)纤维增强水泥基材料, 通过三点弯曲试验, 结合表观裂缝形状和裂缝处PVA纤维形态, 研究了水灰比对材料弯曲性能的影响;通过对断裂面处纤维表面、纤维嵌入端和纤维拉断或拔出端的SEM影像分析, 从微观层面研究了水灰比对PVA纤维-基体界面显微结构的影响。弯曲试验结果表明:随着水灰比增加, 跨中部位裂缝数量明显增加, 裂缝处拔出的纤维数量增多而拉断的数量减少, 材料的弯曲韧度和开裂强度到弯曲强度的增强幅度提高。界面显微结构表明:随着水灰比增加, 基体结构由致密变疏松, 界面粘结力减弱, 桥接裂缝的PVA纤维状态由瞬间猝断转变为滑动拔出且表面有轻微刮削, 纤维对材料增强增韧的效率显著提高。 The water/cement ratios of 0.2, 0.4, and 0.65 were selected to form three types of polyvinyl alcohol (PVA) fiber reinforced cementitious composites. Three-point bending test was implemented to evaluate the effects of water/cement ratio on properties based on crack patterns and PVA fibers morphology in cracks; SEM micrographs of PVA fiber side surface, fibers' embedded and ruptured or pullouted ends in fracture surface were investigated to analyze PVA fiber-matrix interface microstructure at the micro level. Bending test results show that the number of cracks near mid-span site and that of pullouted PVA fibers in cracks increase significantly. Meanwhile, bending toughness value and the rate of improvement from crack strength to bending strength are improved with increasing water/cement ratio. Interface microstructure finds out that matrix structure becomes looser and interface bonding ability becomes lower with increasing water/cement ratio. Meanwhile, the PVA fibers morphology of bridging cracks changes from PVA fiber instant breakage to pullouted and slipped with slight abrasion surface, which significantly improve the rate of fiber reinforced and fiber toughening. 国家自然科学基金(11062007)

References

[1]  Li V C. On engineered cementitious composites: a review of the material and its applications[J]. Advanced Concrete Technology, 2003, 1(3): 215-230.
[2]  Lin Z, Kanda T, Li V C. On interface property characterization and performance of fiber-reinforced cementitious composites[J]. Concrete Science and Engineering, 1999, 1(1):173-184.
[3]  Kamile T, Burak F, Bülent B. Multiple cracking response of plasma treated polyethylene fiber reinforced cementitious composites under flexural loading[J]. Cement and Concrete Composites, 2012, 34(4): 508-520.
[4]  Lepech M D, Li V C, Keoleian G A. Sustainable infrastructure material design[C]//Life-cycle Cost Analysis and Design of Civil Infrastructures Systems, 2005: 83-90.
[5]  Yang E H, Li V C. Fiber-bridging constitutive law of engineered cementitious composites[J]. Advanced Concrete Technology, 2008, 6(1): 181-193.
[6]  Li V C, Wu C. Interface tailoring for strain-hardening PVA-ECC[J]. ACI Materials Journal, 2002, 99(5): 463-472.
[7]  Wang S, Li V C. Engineered cementitious composites with high-volume fly ash[J]. ACI Materials Journal, 2007, 104(3): 233-241.
[8]  Yang E H, Yang Y, Li V C. Use of high volumes of fly ash to improve ECC mechanical properties and material greenness[J]. ACI Materials Journal, 2007, 104(6): 303-311.
[9]  Kim J K, Kim J S, Ha G J, et al. Tensile and fiber dispersion performance of ECC (engineered cementitious composites) produced with ground granulated blast furnace slag[J]. Cement and Concrete Composites, 2007, 37(7): 1096-1105.
[10]  Yang E H, Sahmaran M. Rheological control in the production of engineered cementitious composites[J]. ACI Materials Journal, 2009, 106(4): 357-366.
[11]  Burak F, Kamile T, Bülent B. Influence of matrix flowability, fiber mixing procedure, and curing conditions on the mechanical performance of HTPP-ECC[J]. Composites Part B: Engineering, 2014, 60: 359-370.
[12]  Li M, Li V C. Rheology, fiber dispersion, and robust properties of engineered cementitious composites[J]. Materials and Structures, 2013, 46(3): 405-420.
[13]  Yan P Y. Mechanism of fly ash's effects during hydration process of composite binder[J]. Journal of the Chinese Ceramic Society, 2007, 35(S1): 167-171 (in Chinese). 阎培渝. 粉煤灰在复合胶凝材料水化过程中的作用机理[J]. 硅酸盐学报, 2007, 35(S1): 167-171.
[14]  JCI-DFRCC Committee. DFRCC terminology and application concepts [J]. Advanced Concrete Technology, 2003, 1(3): 335-340.
[15]  Redon C, Li V C, Wu C, et al. Measuring and modifying interface properties of PVA fibres in ECC matrix[J]. Materials in Civil Engineering, 2001, 13(6): 399-406.
[16]  Wu H C, Li V C. Fiber/cement interface tailoring with plasma treatment[J]. Cement and Concrete Composites, 1999, 21(3): 205-212.
[17]  Lepech M D, Li V C, Robertson R E. Design of green engineered cementitious composites for improved sustainability[J]. ACI Materials Journal, 2008, 105(6): 567-575.
[18]  Zhu Y, Yang Y Z, Gao X J. Mechanical properties of engineered cementitious composites with high volume fly ash[J]. Journal of Wuhan University of Technology-Mater, 2009, 24(6): 166-170.
[19]  Shanag M J, Bfincker R, Hanzen W. Pull-out behavior of steel fiber from cement-based composites[J]. Cement and Concrete Research, 1997, 27(6): 925-936.
[20]  Zhang J, Leng B. Transition from multiple macro-cracking to multiple micro-cracking in cementitious composites[J]. Tsinghua Science and Technology, 2008, 13(5): 669-673.
[21]  Wu C. Micromechanical tailoring of PVA-ECC for structural applications[D]. Ann Arbor: University of Michigan, 2001.
[22]  Alva P, Einat Z, Gad M. Bonding characteristics of multifilament polymer yarns and cement matrices[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(6): 930-939.
[23]  Murat T, Halit Y. Pull-out behavior of single steel fiber from SIFCON matrix[J]. Construction and Building Materials, 2012, 35: 571-577.
[24]  Yang Y Z, Gao X J, Deng H W. Effects of water/binder ratio on the properties of engineered cementitious composites[J]. Journal of Wuhan University of Technology-Mater, 2010, 25(2): 298-302.
[25]  Burak F, Kamile T, Baradan B. Effects of fibre type and matrix structure on the mechanical performance of self-compacting micro-concrete composites[J]. Cement and Concrete Research, 2009, 39(11): 1023-1032.
[26]  Li H D, Xu S L, Christopher K Y L. Tensile and flexural properties of ultra high toughness cemontious composite[J]. Journal of Wuhan University of Technology-Mater, 2009, 24(4):677-683.
[27]  ASTM C 1609/C 1609M-05. Standard test method for flexural performance of fiber reinforced concrete (using beam with third-point loading) [S]. West Conshohocken, PA: American Society of Testing and Materials, 2006: 1-8.
[28]  Niu H M, Xing Y M, Zhao Y R. Effects of processing on fiber distribution and mechanical performance of engineered cementitious composites(ECC) [C]//Advanced Materials Research. Switzerland: Trans Tech Publications, 2013, 709: 122-126.
[29]  Naaman A E, Reinhardt H W. Proposed classification of FRC composites based on their tensile response[J]. Materials and Structures, 2006, 39(5): 547-555.
[30]  Kamile T, Burak F, Bülent B. Multiple cracking response of plasma treated polyethylene fiber reinforced cementitious composites under flexural loading[J]. Cement and Concrete Composites, 2012, 34(4): 508-520.
[31]  Huang Q X, Ji J S. The effect of water/cement on structure and strength of hardened cement paste[J]. Journal of the Chinese Ceramic Society, 1966, 5(1): 32-41 (in Chinese). 黄其兴, 冀家森. 水灰比对水泥石结构形成与强度的影响[J]. 硅酸盐学报, 1966, 5(1): 32-41.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133