全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

纳米ZnO填充乙烯-醋酸乙烯酯共聚物的动态流变行为
Dynamic rheological behavior of ethylene-vinyl acetate copolymer filled with nano-ZnO

DOI: 10.13801/j.cnki.fhclxb.20141118.007

Keywords: 乙烯-醋酸乙烯酯共聚物,纳米ZnO,复合材料,逾渗网络,动态流变行为
ethylene-vinyl acetate copolymer
,nano-ZnO,composites,percolation network,dynamic rheological behavior

Full-Text   Cite this paper   Add to My Lib

Abstract:

为提供纳米ZnO/乙烯-醋酸乙烯酯共聚物(EVA)复合材料加工及性能优化的理论依据, 通过熔融共混法制备了纳米ZnO/EVA复合材料, 采用DSC研究了复合材料的熔融结晶行为, 采用旋转流变仪分析了纳米ZnO质量分数以及偶联剂表面处理对复合材料体系动态流变行为的影响。结果表明:随着纳米ZnO质量分数的提高, 纳米ZnO/EVA复合材料的结晶温度和熔融温度均先上升后下降;但改性纳米ZnO质量分数对改性纳米ZnO/EVA复合材料的熔融温度和结晶温度影响不大。当纳米ZnO的质量分数大于20%时, 纳米ZnO/EVA体系的复数黏度发生突变, 储存模量-角频率曲线在低频区出现第二平台, 对应于应变扫描曲线上出现的两段线性黏弹区域, 表明因纳米ZnO粒子间相互关联、团聚及粒子与基体间的相互作用形成了局部有序的逾渗网络结构;而纳米ZnO经偶联剂表面处理后, 体系的复数黏度下降, 储存模量-角频率曲线没有出现平台, 说明改性纳米ZnO在复合材料体系中分散得更加均匀。研究表明偶联剂对纳米ZnO的表面处理改善了纳米ZnO在EVA中的分散性。 In order to provide the theoretical basis for the process and performance optimization of nano-ZnO/ethylene-vinyl acetate copolymer (EVA) composites, nano-ZnO/EVA composites were prepared by melt blending method. The melting and crystallization behaviors of the composites were studied by DSC. The influence of the mass fraction and surface-modification by coupling agent of nano-ZnO on dynamic rheological behavior of the composite system was analyzed by rotational rheometer. The results show that both of the crystallization temperature and melting temperature of nano-ZnO/EVA composites increase firstly, and then decrease with the nano-ZnO mass fraction increasing, while the modified nano-ZnO mass fraction has little effect on melting temperature and crystallization temperature of modified nano-ZnO/EVA composites. The complex viscosity of nano-ZnO/EVA system changes suddenly when the mass fraction of nano-ZnO is greater than 20%, and the storage modulus-angular frequency curve shows the second plateau at low frequency region which corresponding to the two section of linear viscoelastic regions at strain scanning curves, and indicate that local ordered percolation network structure is formed due to the correlation, glomeration between nano-ZnO particles and the interaction between particles and matrix. While after the surface-modification of nano-ZnO by coupling agent, the complex viscosity of system decreases and the plateau of storage modulus-angular frequency curve does not appear, which indicates that the modified nano-ZnO particles are dispersed more homogeneously in the composite system. The research shows that surface-modification of nano-ZnO by coupling agent improves the dispersibility of nano-ZnO in EVA. 江苏省太阳能电池材料与技术重点实验室资助项目(201105)

References

[1]  Wang Z L. Splendid one-dimensional nanostructures of zinc oxide: A new nanomaterial family for nanotechnology[J]. ACS Nano, 2008, 2(10): 1987-1992.
[2]  Li G J, Feng H, Tong Q Y. Study on the preparation and properties of thermally conductive and electric-insulating T-ZnOw/PP composites[J]. Materials Research and Application, 2008, 2(4): 511-516 (in Chinese). 李光吉, 冯晖, 童奇勇. 四针状氧化锌晶须/PP导热绝缘复合材料的制备与性能研究[J]. 材料研究与应用, 2008, 2(4): 511-516.
[3]  Wu G, Lin J, Zheng Q, et al. Correlation between percolation behavior of electricity and viscoelasticity for graphite filled high density polyethylene[J]. Polymer, 2006, 47(7): 2442-2447.
[4]  Payne A R, Whittaker R E. Low strain dynamic properties of filled rubbers[J]. Rubber Chemistry and Technology, 1971, 44(2): 440-478.
[5]  Ferry J D. Viscoelastic properties of polymers[M]. New York: Wiley, 1980: 1-10.
[6]  Lim H T, Ahn K H, Hong J S, et al. Nonlinear viscoelasticity of polymer nanocomposites under large amplitude oscillatory shear flow[J]. Journal of Rheology, 2013, 57(3): 767-789.
[7]  Krikorian V, Pochan D J. Unusual crystallization behavior of organoclay reinforced poly (L-lactic acid) nanocomposites[J]. Macromolecules, 2004, 37(17): 6480-6491.
[8]  Shen M X, Cui Y X, He H, et al. The influence of high-Al2O3 on the thermal conductivity of EVA film[J]. Polymer Materials Science and Engineering, 2009, 25(10): 38-41 (in Chinese). 申明霞, 崔寅鑫, 何辉, 等. 高含量氧化铝对 EVA 胶膜导热性能的影响[J]. 高分子材料科学与工程, 2009, 25(10): 38-41.
[9]  Wang Z L. Zinc oxide nanostructures: Growth, properties and applications[J]. Journal of Physics: Condensed Matter, 2004, 16(25): 830-857.
[10]  Chu L X, Yao B L, Li X, et al. Effect of high filling ZnO on the thermal conductivity of EVA film[J]. New Chemical Materials, 2012, 40(9): 143-145 (in Chinese). 褚路轩, 姚伯龙, 李祥, 等. 高填充ZnO对EVA胶膜导热性能的影响[J]. 化工新型材料, 2012, 40(9): 143-145.
[11]  Zhou L, Xiong C X, Dong L J. Preparation and performance on insulating thermal conductive ZnO whisker/epoxy composite[J]. Polymer Materials Science and Engineering, 2009, 25(5): 165-167 (in Chinese). 周柳, 熊传溪, 董丽杰. 氧化锌晶须/环氧树脂导热绝缘复合材料的制备与性能[J]. 高分子材料科学与工程, 2009, 25(5): 165-167.
[12]  Yu F B, Song J B, Wu Q N, et al. Grafting modification of bamboo flour and its effect on the rheological behavior of bamboo flour/PETG composites[J]. Acta Materiae Compositae Sinica, 2014, 31(3): 578-583 (in Chinese). 余方兵, 宋剑斌, 吴秋宁, 等. 竹粉接枝改性及其对竹粉/PETG复合材料流变行为的影响[J]. 复合材料学报, 2014, 31(3): 578-583.
[13]  Durmus A, Kasgoz A, Macosko C W. Linear low density polyethylene (LLDPE)/clay nanocomposites. Part I: Structural characterization and quantifying clay dispersion by melt rheology[J]. Polymer, 2007, 48(15): 4492-4502.
[14]  Wang B, Sun G P, Sun G E, et al. The thermal characterization and rheology behavior of PP/MWNTs nanocomposites[J]. Acta Polymerica Sinica, 2006(3): 408-413 (in Chinese). 王彪, 孙广平, 孙国恩, 等. 聚丙烯/多壁碳纳米管复合材料的热性能和流变性能[J]. 高分子学报, 2006(3): 408-413.
[15]  Lee B, Liu J Z, Sun B, et al. Thermally conductive and electrically insulating EVA composite encapsulants for solar photovoltaic (PV) cell[J]. Express Polymer Letters, 2008, 2(5): 357-363.
[16]  Kulkarni A J, Zhou M. Size-dependent thermal conductivity of zinc oxide nanobelts[J]. Applied Physics Letters, 2006, 88(14): 19-41.
[17]  Suleiman M A, Hussein I A, Williams M C. Rheological investigation of the influence of short chain branching and Mw of LDPE on the melt miscibility of LDPE/PP blends[J]. Open Macromolecules Journal, 2011, 5(1): 13-19.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133