全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

炭黑增强橡胶复合材料的大变形细观力学模型
Micromechanics models for finite deformation of carbon black reinforced rubber composites

DOI: 10.13801/j.cnki.fhclxb.20141103.001

Keywords: 炭黑增强,填充橡胶,大变形行为,细观力学模型,数值模拟
carbon black reinforcement
,filled rubber,finite deformation behavior,micromechanics model,numerical simulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

为考察炭黑对橡胶复合材料超弹性力学行为的影响, 首先, 利用不同填充体积分数的炭黑增强橡胶复合材料的准静态力学试验数据, 对现有的基于均质化方法的"变形放大"细观力学模型的大变形表征能力进行了评估。其次, 在此基础上提出了新的"第一不变量放大"关系, 并获得了较为合理的预测结果。最后, 利用随机序列吸附算法建立了较接近材料真实细观结构的球形颗粒填充数值模型, 进行了大变形情况下的三维数值模拟;为考察颗粒聚集效应的影响, 还设置了颗粒均匀随机分布和团聚随机分布两种形式。计算结果与试验数据的对照表明:提出的三维细观数值模型已经能在一定程度上预测填充橡胶的大变形宏观力学行为, 且颗粒团聚随机分布模型的预测能力更好一些。试验结果验证了该模型的合理性, 所建模型为进一步的相关研究提供了参考。 In order to investigate the effects of carbon black on the hyper-elastic mechanical behaviors of rubber composites, first, by employing the quasi-static mechanical test data of carbon black reinforced rubber composites with different filling volume fractions, the finite deformation characterizing abilities of existing "deformation amplification" micromechanics models which based on homogenization method were evaluated. Then, a new "1st invariant amplification" relationship was proposed on the basis, and rational prediction results were obtained. Finally, by using the random sequential absorption algorithm, the spherical particulate filling numerical models which were approximate to the real microstructures of materials were established, and 3D numerical simulations under finite deformation situation were conducted. In order to investigate the influences of particle clustering effect, two forms which were particles regular random dispersion and agglomerate random dispersion were designed. The comparison between computational results and test data indicates that the proposed 3D micromechanics numerical modes are able to predict the finite deformation macroscopic mechanical behavior of filled rubbers to some extent, and the prediction abilities of particles agglomerate random dispersion models are better. The test results confirm the reliability of proposed models, and the proposed models provide some references to the further related research. 中央高校基本科研业务费专项资金(2013-IV-109);教育部博士点基金(20130143120005)

References

[1]  Govindjee S. An evaluation of strain amplification concepts via Monte Carlo simulations of an ideal composite[J]. Rubber Chemistry and Technology, 1997, 70(1): 25-37.
[2]  Bergstrom J S, Boyce M C. Mechanical behavior of particle filled elastomers[J]. Rubber Chemistry and Technology, 1999, 72(4): 633-656.
[3]  Castaneda P P, Tiberio E. A second-order homogenization method in finite elasticity and applications to black-filled elastomers[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(6-7): 1389-1411.
[4]  Xia Y, Li W, Xia Y M. Test and characterization for the incompressible hyperelastic properties of conditioned rubbers under moderate finite deformation[J]. Acta Mechanica Solida Sinica, 2004, 17(4): 307-314.
[5]  Qiao S R. Mesoscopic mechanical properties of composite materials[M]. Xi'an: Northwest Polytechnic University Press, 1997: 86-97 (in Chinese). 乔生儒. 复合材料细观力学性能[M]. 西安: 西北工业大学出版社, 1997: 86-97.
[6]  Yatsuyanagi F, Suzuki N, Ito M, et al. Effect of secondary structure of fillers on the mechanical properties of silica filled rubber systems[J]. Polymer, 2001, 42(23): 9523-9529.
[7]  Hazanov S, Huet C. Order relationship for boundary conditions effect in heterogeneous bodies smaller than the representative volume[J]. Journal of the Mechanics and Physics of Solids, 1994, 42(12): 1995-2011.
[8]  Ostoja-Starzewski M, Du X, Khisaeva Z, et al. Comparison of the size of representative volume element in elastic, plastic, thermoelastic and permeable random microstructures[J]. International Journal of Multiscale Computational Engineering, 2007, 5(2): 73-82.
[9]  Li Q, Yang X X. Study on macroscopic and microscopic mechanical behavior of carbon black filled rubber composite[J]. Journal of Mechanical Engineering, 2013, 49(18): 132-139 (in Chinese). 李庆, 杨晓翔. 炭黑填充橡胶复合材料的宏细观力学行为研究[J]. 机械工程学报, 2013, 49(18): 132-139.
[10]  Wang Y Q. Basis of rubber materials[M]. Beijing: Chemical Industry Press, 2006: 115-128 (in Chinese). 王艳秋. 橡胶材料基础[M]. 北京: 化学工业出版社, 2006: 115-128.
[11]  Boyce M C, Arruda E M. Constitutive models of rubber elasticity: A review[J]. Rubber Chemistry and Technology, 2000, 73(3): 504-552.
[12]  Fu Z. Property and design application of rubber materials[M]. Beijing: Chemical Industry Press, 2003: 60-103 (in Chinese). 傅政. 橡胶材料性能与设计应用[M]. 北京: 化学工业出版社, 2003: 60-103.
[13]  Hu X L, Liu X, Li M, et al. 3D finite element modeling of the hyperelastic mechanical behavior of CB-filled rubber[J]. Chinese Journal of Solid Mechanics, 2013, 33(Suppl.1): 117-121 (in Chinese). 胡小玲, 刘秀, 李明, 等. 炭黑填充橡胶超弹性力学性能的三维有限元模拟[J]. 固体力学学报, 2013, 33(增刊1): 117-121.
[14]  Segurado J, Llorca J. A numerical approximation to the elastic properties of sphere-reinforced composites[J]. Journal of the Mechanics and Physics of Solids, 2002, 50(10): 2107-2121.
[15]  Meinecke E A, Taftaf M I. Effect of carbon black on the mechanical properties of elastomers[J]. Rubber Chemistry and Technology, 1988, 61(3): 534-547.
[16]  Hill R. On constitutive macro-variables for heterogeneous solids at finite strain[J]. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1972, 326(1565): 131-147.
[17]  Mullins L, Tobin N R. Stress softening in rubber vulcanizates Part 1: Use of strain amplification factor to describe the elastic behavior of filler-reinforced vulcanized rubber[J]. Journal of Applied Polymer Science, 1965, 9(9): 2993-3009.
[18]  Li X, Xia Y, Li Z R, et al. Three-dimensional numerical simulations on the hyperelastic behavior of carbon-black particle filled rubbers under moderate finite deformation[J]. Computational Materials Science, 2012, 55: 157-165.
[19]  Lopez-Pamies O, Goudarzi T, Danas K. The nonlinear elastic response of suspensions of rigid inclusions in rubber: II — A simple explicit approximation for finite-concentration suspensions[J]. Journal of the Mechanics and Physics of Solids, 2013, 61(1): 19-37.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133