|
- 2015
钢纤维橡胶再生混凝土的抗冻性试验
|
Abstract:
为使废弃混凝土和再生橡胶在北方地区混凝土工程中得以应用,采用正交试验法研究再生粗骨料掺量、再生粗骨料强化方式、钢纤维掺量与橡胶掺量对钢纤维橡胶再生混凝土(C45)立方体抗压强度和抗冻性的影响规律。利用扫描电镜和螺旋CT扫描技术研究了钢纤维橡胶再生混凝土的宏观和细观结构及其对抗冻性能的影响机理。结果表明:橡胶颗粒掺量是影响再生混凝土含气量、抗压强度和相对动弹模量的重要因素, 再生粗骨料掺量是影响相对动弹模量和强度损失率的次要因素, 钢纤维掺量对混凝土抗压强度增强作用较小, 粗骨料强化方式对混凝土性能影响不大;橡胶颗粒与砂浆界面的裂缝宽度在5~55 μm之间, 二者之间的相容性较差;当橡胶颗粒掺量(与砂的体积比)大于20%后, 随橡胶颗粒掺量增大, 混凝土内部孔洞数目增多, 钢纤维橡胶再生混凝土抗压强度降低、抗冻性减弱。 In order to make waste concrete and recycled rubber apply in concrete engineering in northern region, the effects of recycled coarse aggregates content, strengthening method of recycled coarse aggregates, content of steel fibers as well as content of rubber on compressive strength and frost resistance of steel fiber rubber recycled concrete (C45) were investigated by orthogonal design tests. Through the scanning electron microscopy and screw CT scanning technique, the macro and micro structure and their effect mechanisms on frost resistance of steel fiber rubber recycled concrete were analyzed. The results show that the content of rubber particles is a prominent factor affecting the gas content, compressive strength and relative dynamic elastic modulus of recycled concrete, and the content of recycled coarse aggregates is also an important factor affecting the relative dynamic elastic modulus and strength loss rate. In addition, the compressive strength of concrete increases slowly with the increase of steel fibers, and strengthening method of aggregates has almost no effect on the performance of concrete. The crack width between rubber particles and mortar interface falls into 5-55 μm. Compatibility between rubber particles and mortar interface is a little bad. When the content of rubber particles is above 20% (volume ratio between rubber particles and sands), the inner hole number of concrete will rise with the increase of rubber particle content. The compressive strength of steel fiber rubber recycled concrete will drop, and frost resistance will also decrease. 国家自然科学基金(11132003,51179064,11372099,U1404526);河南省高校科技创新团队支持计划(15IRTSTHN028);水利部公益性行业科研专项(201301027);郑州市生态建筑材料重点实验室项目(201311)
[1] | Kang J F, Zhang Z L, Han C C. Strength and deformation behaviors of roller-compacted rubberized concrete [J]. Acta Materiae Compositae Sinica, 2009, 26(2):155-159 (in Chinese). 亢景付, 张振利, 韩春翠. 等强条件下橡胶粉对碾压混凝土强度与变形性能的影响[J]. 复合材料学报, 2009, 26(2):155-159. |
[2] | Yang C F, Ye W C, Yang X H. Experimental study on frost resistance property of waste rubber aggregate concrete [J]. Concrete, 2013(3): 81-83, 89 (in Chinese). 杨春峰, 叶文超, 杨晓慧. 废旧橡胶集料混凝土抗冻融性能的试验研究 [J]. 混凝土, 2013(3): 81-83, 89. |
[3] | Tan Y Q, Xu H N, Zhou C X, et al. Temperature distribution characteristic of subgrade in seasonally frozen regions [J]. Journal of Harbin Institute of Technology, 2011, 43(8): 98-102 (in Chinese). 谭忆秋, 徐慧宁, 周纯秀, 等. 季节性冰冻地区路基温度场分布规律[J]. 哈尔滨工业大学学报, 2011, 43(8): 98-102. |
[4] | Kang J F, Ren H B, Zhang P Z. Cracking-resistance and flexural property of rubberized concrete[J]. Acta Materiae Compositae Sinica, 2006, 23(6): 158-162 (in Chinese). 亢景付, 任海波, 张平祖. 橡胶混凝土的抗裂性能和弯曲变形性能[J]. 复合材料学报, 2006, 23(6): 158-162. |
[5] | Yao W. Green concrete[M]. Beijing: Chemical Industry Press, 2006: 100-129 (in Chinese). 姚武. 绿色混凝土[M].北京:化学工业出版社, 2006: 100-129. |
[6] | Liu R X, Hou W S, Xu Y H, et al. Effect of crumb rubber on the mechanical properties of concrete[J]. Journal of Building Materials, 2009, 12(3): 341-344 (in Chinese). 刘日鑫, 侯文顺, 徐永红, 等. 废橡胶颗粒对混凝土力学性能的影响[J].建筑材料学报, 2009, 12(3): 341-344. |
[7] | Ma Y P, Liu X Y, Tan Z M, et al. Research on physical and mechanical properties of cement concrete mixed with modified rubber particles[J]. Journal of Building Materials, 2009, 12(4): 379-383 (in Chinese). 马一平, 刘晓勇, 谈至明, 等. 改性橡胶混凝土的物理力学性能[J]. 建筑材料学报, 2009, 12(4): 379-383. |
[8] | Yuan B, Liu F, Qiu X L, et al. Experimental study on compressive performances of rubber concrete under different strain rate[J]. Journal of Building Materials, 2010, 13(1):12-16 (in Chinese). 袁兵, 刘锋, 丘晓龙, 等. 橡胶混凝土不同应变率下抗压性能试验研究[J]. 建筑材料学报, 2010, 13(1):12-16. |
[9] | Guo Y C, Liu F, Chen G X, et al. Experimental investigation on impact resistance of rubberized concrete[J]. Journal of Building Materials, 2012, 15(1): 139-144 (in Chinese). 郭永昌, 刘锋, 陈贵炫, 等. 橡胶混凝土的冲击压缩试验研究[J]. 建筑材料学报, 2012, 15(1): 139-144. |
[10] | Yang Y, Zheng L. Experimental study on dynamic properties of rubberized concrete [J]. Journal of Tongji University: Natural Science, 2008, 36(9): 1186-1190(in Chinese). 袁勇, 郑磊. 橡胶混凝土动力性能试验研究[J]. 同济大学学报:自然科学版, 2008, 36(9): 1186-1190. |
[11] | Chen A J, Wang J, Yang F. Experiments of mechanical properties and failure analysis of fiber recycled concrete[J]. Journal of Building Materials, 2013, 16(2): 244-248, 265 (in Chinese). 陈爱玖, 王静, 杨粉. 纤维再生混凝土力学性能试验及破坏分析[J]. 建筑材料学报, 2013, 16(2): 244-248, 265. |
[12] | Sun J Y, Geng J. Effect of particle size and content of recycled fine aggregate on frost resistance of concrete [J]. Journal of Building Materials, 2012, 15(3): 382-385 (in Chinese). 孙家瑛, 耿健. 再生细骨料粒径及掺量对混凝土抗冻性能的影响[J]. 建筑材料学报, 2012, 15(3): 382-385. |
[13] | Yang Q B. One of mechanisms on the deicer-frost scaling of concrete (Ⅱ): Degree of saturation and ice-formation pressure during freeze-thaw cycles [J]. Journal of Building Materials, 2012, 15(6): 741-746 (in Chinese). 杨全兵. 混凝土盐冻破坏机理(Ⅱ):冻融饱水度和结冰压[J]. 建筑材料学报, 2012, 15(6): 741-746. |
[14] | Zhu F Z. Experimental study on the deicer-scaling resistance of crumb rubber concrete [D]. Tianjin: Tianjin University, 2006 (in Chinese). 祝发珠. 橡胶集料混凝土抗盐冻性能试验研究[D].天津:天津大学, 2006. |
[15] | Niu Y F, Yan N X, Zheng X Q, et al. Influence of proportions and particle sizes of rubber powder to the concrete frost resistance[J]. Yellow River, 2013, 35(5): 121-123 (in Chinese). 牛艳芳, 闫宁霞, 郑新桥, 等. 橡胶掺量与粒径对混凝土抗冻性影响试验研究[J]. 人民黄河, 2013, 35(5): 121-123. |
[16] | Paine K A, Dhir R K, Moroney R, et al. Use of crumb rubber to achieve freeze-thaw resisting concrete[C]//Proceedings of International Congress Concrete for Extreme Conditions. 2002: 485-498. |
[17] | China Institute of Water Resources and Hydropower Research. SL352—2006 Test code for hydraulic concrete[S].Beijing: China Water & Power Press, 2006 (in Chinese). 中国水利水电科学研究院. SL352—2006水工混凝土试验规程[S].北京: 中国水利水电出版社, 2006. |
[18] | Hong J X, Miao C W, Liu J P, et al. Degradation law of mechanical properties of concrete subjected to freeze-thaw cycles [J]. Journal of Building Materials, 2012, 15(2): 173-178 (in Chinese). 洪锦祥, 缪昌文, 刘加平, 等. 冻融损伤混凝土力学性能衰减规律[J]. 建筑材料学报, 2012, 15(2): 173-178. |
[19] | Zhao Q X, Kang P P. Influence of mechanical damage on frost resistance of concrete [J]. Journal of Building Materials, 2013, 16(2): 326-329, 334 (in Chinese). 赵庆新, 康佩佩. 力学损伤对混凝土抗冻性的影响[J]. 建筑材料学报, 2013, 16(2): 326-329, 334. |
[20] | Cao D F, Fu L Z, Yang Z W. Experimental study on tensile properties of concrete after freeze-thaw cycles [J]. Journal of Building Materials, 2012, 15(1): 48-52 (in Chinese). 曹大富, 富立志, 杨忠伟. 冻融循环作用下混凝土的受拉性能研究[J]. 建筑材料学报, 2012, 15(1): 48-52. |
[21] | Xu J H, Feng X T, Chen S L. Effects of rubber aggregate on the frost resistance of concrete [J]. Journal of Northeastern University: Natural Science, 2012, 33(6): 895-898 (in Chinese). 徐金花, 冯夏庭, 陈四利. 橡胶集料对混凝土抗冻性的影响[J]. 东北大学学报: 自然科学版, 2012, 33(6): 895-898. |