含有扁长椭球形增强物复合材料的弹性常数
, PP. 108-117
Keywords: 弹性模量,复合材料,泊松比,各向异性
Abstract:
研究了含有扁长椭球形增强物复合材料的弹性过程并得到了材料整体的弹性常数.当材料基体和增强材料均为各向同性材料,增强材料的体积相对于基体非常地小并与基体紧密相联时,含有扁长椭球形增强物的材料具有各向异性,提高这种材料的杨氏模量是以牺牲剪切模量为代价的.
References
[1] | Eshelby J D.The determination of the elastic field of an ellipsoidal inclusion,and related problem.prat R Soc Lond,1957;(A241):376-396
|
[2] | 村外志夫.森勉.微观机理—位错和介在物(日文).东京:培风馆,1976:25
|
[3] | 广懒幸雄,林政,佐佐木敏彦.含有球形介在物材料的弹性常数.材料工程.1991;(10)
|
[4] | Marshall D B.Evans A G.Failure mechanisms in ceramc-fiber/ceramic-matrix comowes.J Am Ceram Soc.1985;
|
[5] | Mori T,Saito K,Mura T.An inclusion model for crack arrest in a composite reinforced by sliding fibers.Meth Mater,1988;(7):49-58
|
[6] | Stang H.A double inclusion model for microcrack arrest in fiber reinforced brttle materials.J Mech Phys Solids,1987;(35-3):325-342
|
[7] | 斋藤宪司等.日本机械学会论文集A.1992;58(548):614-620
|
[8] | 荒木荣敏等.日本机械学会论文集A,1992;58(552):1495-1501
|
[9] | 斋藤宪司等.日本机械学会论文集A,1993;59(563):1702-1708
|
[10] | 荒木荣敏等.日本机械学会论文集A.1993;59(563);1709-1714
|
[11] | Lin S C.Hirose Y,Mura T.J of Engin Mater and Tech,1994;116(7):359-366
|
[12] | Mura T.Micromechanics of defects in solids.Martinus Nijhoff The Hague,1982;
|
Full-Text