全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

南海西部54万年以来元素地球化学记录及其反映的古环境演变

DOI: 10.11867/j.issn.1001-8166.2012.03.0327, PP. 327-336

Keywords: 碳酸盐地层,XRF岩芯元素扫描,东亚夏季风,海平面变化,晚第四纪,南海

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过对南海西部上升流区MD05-2899孔开展高分辨率碳酸盐地层学和XRF岩芯扫描元素地球化学分析,重建了晚第四纪54万来以来东亚夏季风的演化历史,探讨海平面升降对南海西部陆源碎屑供应量的影响。研究选用了ln(Ba/Al)作为该海区古生产力的指标,ln(Br/Al)作为有机物的指标,ln(Ti/Al)作为陆源碎屑供应量的指标。研究结果显示,东亚夏季风在过去54万年以来强度不断增强,具有明显的冰期—间冰期旋回特征,在间冰期强盛和冰期减弱,是控制该海区有机物含量变化的主要因素。东亚夏季风不断强盛可能直接导致了南海周边陆地降雨增强,河流径流量加大,使得南海西部上升流区域的陆源碎屑供应量在间冰期明显高于冰期。研究发现,当相对海平面低于-60m的时候,大面积暴露的巽他陆架可能向南海西部深水区输入大量陆源碎屑物质,造成研究站位的陆源碎屑供应量在冰盛期出现高值。因此,晚第四纪的东亚夏季风演化和海平面升降共同控制了南海西部上升流区陆源碎屑物质供应量的变化。

References

[1]  Wang Pinxian. Global monsoon in a geological perspective[J].Chinese Sciences Bulletin, 2009, 54(7): 1 113-1 136.[汪品先. 全球季风的地质演变[J]. 科学通报, 2009, 54 (5): 535-556.]
[2]  Webster P J. The role of hydrological processes in ocean-atmosphere interactions[J].Review of Geophysics, 1994, 32:427-476.
[3]  Laj C, Wang P, Balut Y. MD147-Marco Polo IMAGES XII Cruise Report[R]. France: Institut Paul-Emile Victor (IPEV), 2005.
[4]  Tjallingii R, Rohl U, Kolling M, et al. Influence of the water content on X-ray fluorescence core-scanning measurements in soft marine sediments[J].Geochemistry Geophysics Geosystems, 2007, 8(2): Q02004, doi: 10.1029/2006GC001393.
[5]  Wang Pinxian. Glacial carbonate cycles in western pacific marginal seas[J]. Marine Geology & Quaternary Geology, 1998, 18(1): 1-11.[汪品先. 西太平洋边缘海的冰期碳酸盐旋回[J]. 海洋地质与第四纪地质, 1998, 18(1): 1-11.]
[6]  Thunell R C, Miao Q, Calvert S E, et al. Glacial-Holocene biogenic sedimentation patterns in the South China Sea: Productivity variations and surface water pCO2[J]. Paleoceanography, 1992, 7: 143-162.
[7]  Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J].Paleoceanography, 2005, 20, PA1003, doi:10.1029/2004PA001071.
[8]  Paillard D, Labeyrie L, Yiou P. Macintosh Program performs time-series analysis[J]. Eos, Transactions American Geophysical Union, 1996, 77(39):379.
[9]  Wehausen R, Tian J, Brumsack H J, et al. Geochemistry of Pliocene sediments from ODP Site 1143 (southern South China Sea)[C]∥Prell W L , Wang P, Blum P, et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results, 184: College Station, TX (Ocean Drilling Program). 2003.
[10]  Tian J, Xie X, Ma W, et al. X-ray fluorescence core scanning records of chemical weathering and monsoon evolution over the past 5 Myr in the southern South China Sea[J]. Paleoceanography, 2011, 26, PA4202, doi: 10.1029/2010PA002045.
[11]  Yarincik K M, Murray R W, Peterson L C. Climatically sensitive eolian and hemipelagic deposition in the Cariaco Basin, Venezuela, over the past 578,000 years: Results from Al/Ti and K/Al[J].Paleoceanography, 2000, 15(2): 210-228.
[12]  Ziegler M, Jilbert T, de Lange G J, et al. Bromine counts from XRF scanning as an estimate of the marine organic carbon content of sediment cores[J]. Geochemistry Geophysics Geosystems, 2008, 9, Q05009, doi:10.1029/2007GC001932.
[13]  Sathiamurthy E, Voris H K. Maps of Holocene Sea level transgression and submerged lakes on the sunda shelf[J].The Natural History Journal of Chulalongkorn University,2006,2(Suppl.): 1-43.
[14]  Waelbroeck C, Labeyrie L, Michel E, et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records[J].Quaternary Science Reviews, 2002, 21(1/3): 295-305.
[15]  Wang P X, Li Q. Introduction[C]∥Wang P X, Li Q,eds. The South China Sea: Paleoceanography and Sedimentology. Netherlands: Springer, 2009:1-23.
[16]  Huang Wei, Wang Pinxian. A quantitative approach to deep-water sedimentation in the South China Sea: Changes since the last glaciation[J].Science in China (Series D), 1998, 41(2): 195-201.[黄维, 汪品先. 末次冰期以来南海深水区的沉积速率[J]. 中国科学:D辑, 1998, 28(1): 13-17.]
[17]  Huang Wei, Wang Pinxian. Accumulation rate characteristics of deep water sedimentation in the South China Sea during the Last Glaciation and the Holocene[J]. Acta Oceanologica Sinica,2007, 29(5): 69-73.[黄维, 汪品先. 南海深水区末次冰期和冰后期沉积物堆积速率的特征[J]. 海洋学报, 2007, 29(5): 69-73.]
[18]  Wang L, Sarnthein M, Erlenkeuser H, et al. East Asian monsoon climate during the Late Pleistocene: High-resolution sediment records from the South China Sea[J]. Marine Geology, 1999, 156(1/4): 245-284.
[19]  Wang P X, Li Q. Oceanographical and geological background[C]∥Wang P X, Li Q, eds. South China Sea: Paleoceanography and Sedimentology. Netherlands: Springer, 2009:25-73.
[20]  Hanebuth T J J, Voris H K, Yokoyama Y, et al. Formation and fate of sedimentary depocentres on Southeast Asia's Sunda Shelf over the past sea-level cycle and biogeographic implications[J].Earth-Science Reviews, 2011, 104:92-110.
[21]  Liu Zhifei, Zhao Yulong, Li Jianru, et al. Late quaternary clay minerals off Middle Vietnam in the western South China Sea: Implications for source analysis and East Asian Monsoon evolution[J]. Science in China (Series D),2007, 50(11): 1 674-1 684.[刘志飞, 赵玉龙, 李建如, 等. 南海西部越南岸外晚第四纪黏土矿物记录: 物源分析与东亚季风演化[J].中国科学:D辑, 2007, 37(9):1 176-1 184.]
[22]  Jansen J H F, Van der Gaast S J, Koster B, et al. CORTEX, a shipboard XRF-scanner for element analyses in split sediment cores[J].Marine Geology,1998, 151: 143-153.
[23]  Zhao Quanhong, Wang Pinxian. Progress in Quaternary paleoceanography of the South China Sea: A review[J].Quaternary Sciences, 1999, 6: 481-499.[赵泉鸿, 汪品先.南海第四纪古海洋学研究进展[J].第四纪研究, 1999, 6: 481-499.]
[24]  Huang C Y, Wang C C, Zhao M. High-resolution carbonate stratigraphy of IMAGES core MD972151 from South China Sea[J].Terrestrial, Atmospheric and Oceanic Sciences (TAO), 1999, 10(1): 225-238.
[25]  Weltje G J, Tjallingii R. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application[J].Earth and Planetary Science Letters,2008, 274(3/4): 423-438.
[26]  Calvert S E, Pedersen T F. Chapter fourteen: Elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: Interpretation and application[C]∥Claude H M, Anne De V, eds. Developments in Marine Geology. Elsevier, 2007:567-644.
[27]  Liu Z F, Huang W, Li J, et al. Sedimentology[C]∥Wang P X, Li Q, eds. South China Sea: Paleoceanography and Sedimentology. Netherlands: Springer, 2009:171-295.
[28]  Zhao M, Wang P X, Tian J, et al. Biogeochemistry and the Carbon reservoir[C]∥Wang P, Li Q, eds. South China Sea: Paleoceanography and Sedimentology. Netherlands: Springer, 2009:439-483.
[29]  Imbrie J, Hays J D, Martinson D G, et al. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ18O record[C]∥Berger A, Imbrie J, Hays H, et al, eds. Milankovitch and Climate: Understanding the Response to Astronomical Forcing. D. Reidel Publishing Company, 1984:269-305.
[30]  Thompson P R, Be A W H, Duplessy J C, et al. Disappearance of pink-pigmented Globigerinoides ruber at 120,000 yr BP in the Indian and Pacific Oceans[J]. Nature, 1979, 280:554-558.
[31]  Gingele F, Dahmke A. Discrete barite particles and barium as tracers of paleoproductivity in South Atlantic Sediments[J]. Paleoceanography, 1994,9(1):151-168.
[32]  Murray R W, Knowlton C, Leinen M, et al. Export production and carbonate dissolution in the central equatorial Pacific Ocean over the past 1 Myr[J].Paleoceanography, 2000, 15(6): 570-592.
[33]  Wehausen R, Brumsack H J. Astronomical forcing of the East Asian monsoon mirrored by the composition of pliocene south china sea sediments[J]. Earth and Planetary Science Letters, 2002,201: 621-636.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133