全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于GIS的层次分析法在沽源地区铀成矿预测中的应用

DOI: 10.11867/j.issn.1001-8166.2014.08.0968, PP. 968-973

Keywords: 层次分析法,铀成矿预测,沽源地区,GIS

Full-Text   Cite this paper   Add to My Lib

Abstract:

在分析了沽源地区铀矿床成矿地质特征的基础上,总结了区域铀矿找矿标志,提取了各类找矿信息,利用GIS的空间分析功能分别提取了地层、构造、潜火山岩、热液蚀变、化探异常、航磁异常、航放异常等14个有利分析因子,建立了层次分析模型,并根据该区成矿概率的分布进行了成矿远景区的预测,圈定Ⅰ级远景区2个、Ⅱ级远景区7个、Ⅲ级远景区5个,为在沽源地区开展进一步铀矿找矿奠定了基础。

References

[1]  Guangyin. Geological conditions for ore-forming process and prospecting direction of the U-Mo polymetallic deposits in Guyuan Volcanic Basin[J]. Mineral Resources and Geology, 2008, 22(6):510-516.[沈光银. 沽源火山盆地铀钼多金属成矿地质条件分析及找矿方向[J]. 矿产与地质, 2008, 22(6):510-516.]
[2]  En. The application of airborne survey data in study to the metallogenetic prognosis for uranium in Guyuan Basin[J]. Morden Mining, 2012, 512(9):48-51.[张恩. 航测资料在沽源盆地铀矿远景预测中的应用[J]. 现代矿业, 2012, 512(9):48-51.]
[3]  Qiquan, Wang Changquan, Yue Tianxiang, et al. Method for spatial simulation of topsoil organic matter in China based on a neural network model[J]. Advances in Earth Science, 2012, 27(2):175-184.[李启权, 王昌全, 岳天祥, 等. 基于神经网络模型的中国表层土壤有机质空间分布模拟方法[J]. 地球科学进展, 2012, 27(2):175-184.]
[4]  Zixian, Zang Shuying. Research on chlorophyll concentration retrieval models of keqin lake basde on genrtic neural netwoks[J]. Advances in Earth Science, 2012, 27(2):202-208.[朱子先, 臧淑英.基于遗传神经网络的克钦湖叶绿素反演研究[J]. 地球科学进展, 2012, 27(2):202-208.]
[5]  Cuihua, Ni Shijun, He Binbin, et al. Potential ecological risk analysis of heavy metals contam ination based on GIS methods in sediments of Dexing, Jiangxi Province, China[J]. Advances in Earth Science, 2008, 23(3):312-322.[陈翠华, 倪师军, 何彬彬, 等. 基于GIS技术的江西德兴地区水系沉积物重金属污染的潜在生态危害研究[J]. 地球科学进展, 2008, 23(3):312-322.]
[6]  Yongjun, Li Mingsong, Quan Xudong, et al. Application of GIS-based analytic hierarchy process for minerogenetic prediction in northern Zhangjiakou region[J]. Geological Science and Technology Information, 2007, 26(4):15-18.[王永军, 李名松, 全旭东, 等.基于GIS的层次分析法在张家口北部地区金矿成矿预测中的应用[J]. 地质科技情报, 2007, 26(4):15-18.]
[7]  Zhen,  Gao Guangming, Xiao Juan, et al. Study on multi-source information metallogenic prognosis using GIS in southern Peru[J]. Geoscience, 2013, 27(1):108-115.[席振, 高光明, 肖娟, 等.基于GIS的秘露南部多源信息成矿预测研究[J]. 现代地质, 2013, 27(1):108-115.]
[8]  Xudong, Wang Yongjun, Wang Bing, et al. Application of ANN and GIS in uranium metallization prediction—A case study of northern Tarim Basin[J]. Uranium Geology, 2013, 29(6):374-379.[全旭东, 王永军, 汪冰, 等.基于GIS的人工神经网络模型在铀成矿预测中的应用——以塔里木盆地北缘为例[J]. 铀矿地质, 2013, 29(6):374-379.]
[9]  H H, Hale M. Apredictive GIS model for mapping potential gold and base metal mineralization in Takab area, Iran[J]. Computers & Geosciences, 2001, 27 (8):901-912.
[10]  Yunchuan, Ren Tianxiang, Yang Zhuxi. The development and utilization of Geophysical Information System (GIS) and the integrated analysis of geoscience information for the prognosis of ore resources[J]. Geophysical & Geochemical Exploration, 1996, 20(1):1-13.
[11]  Yaosong. Isotope age of principal mineralization period in uranium deposit No.460[J]. Uranium Geology, 1989, 5(4):203-208.[李耀菘. 460铀矿床主要矿化期的同位素年龄[J]. 铀矿地质, 1989, 5(4):203-208.]
[12]  Guozhen. Discussion on metallogenic characteristics and genesis of large U-Mo deposit No. 460[J]. World Nuclear Geoscience, 2010, 27(3):149-154.[芮国桢. 460大型铀—钼矿床成矿地质特征及成因探讨[J]. 世界核地质科学, 2010, 27(3):149-154.]
[13]  Jisheng, Wang Zhenbin, Yu Nianfu. A study geological characteristics and metalogenetic condition of uranium deposit No. 534[J].Uranium Geology, 1992, 8(5):71-76.[桑吉盛, 王振斌, 于年福.543铀矿床成矿地质特征及成因探讨[J]. 铀矿地质, 1992, 8(5):71-76.]
[14]  Guangyin. Ore-control ling factors of the 460 U-Mo deposit and its genesis discussion[J]. Mineral Resources and Geology, 2007, (5):509-514.[沈光银. 460铀钼矿床控矿因素及矿床成因探讨[J]. 矿产与地质, 2007, (5):509-514.]
[15]  Donghuan, Fan Honghai, Wang Fenglan, et al. The alteration characteristics of uranium deposits in Guyuan-Hongshanzi area[J]. Uranium Geology, 2011, 27(2):89-93.[陈东欢, 范洪海, 王凤岚, 等. 沽源—红山子地区火山岩型铀矿床蚀变特征[J]. 铀矿地质, 2011, 27(2):89-93.]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133