J, Xu L. Study on convergence problem of T-matrix approach of light scattering by randomly oriented axially symmetric nonspherical particles[C]∥Preprints of Conference on Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications. New York: AMS, 1998: 257-260.
[2]
J, Xu L. Convergence of T-matrix approach for randomly oriented, non-absorbing, nonspherical Chebyshev particles[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1999, 63: 163-174.
[3]
J, Xu L. Light scattering characteristics by small ice circular cylinders in visible, 1.38 μm, and some infrared wavelengths[J]. Optical Engineering, 2002, 41: 2 252-2 266.
[4]
J, Xu L. Light scattering by absorbing hexagonal ice crystals in cirrus clouds[J]. Applied Optics, 1995, 34: 5 867-5 874.
[5]
L, Zhang G, Ding J, et al. Light scattering by polydispersions of randomly oriented hexagonal ice crystals in cirrus couds: Phase function analyses[J]. Optics, 1997, 106: 103-114.
[6]
L, Zhang J. Light scattering by randomly oriented hexagonal ice crystals: Improved diffraction computations and diffraction properties of ice crystals[J]. Optics, 1996, 101: 161-165.
[7]
G, Xu L, Takamura T, et al. Single- and multiple-scattering properties of ice crystals in 1.38 μm wavelength and its potential applications in satellite remote sensing of cirrus cloud properties[J]. Chinese Science Bulletin, 1999, 44: 650-654.
[8]
L, Ding J, Cheng Y S Andrew. Scattering matrix of infrared radiation by ice finite circular cylinders[J]. Applied Optics, 2002, 41: 2 333-2 348.
[9]
Lisheng. Several Frontiers of Atmospheric Radiation and Remote Sensing Research[M]. Beijing: Meteorological Press, 1996:170-180.[许丽生. 大气辐射和卫星遥感一些前沿问题的研究, 现代大气科学前沿与展望[M]. 北京: 气象出版社, 1996: 170-180.]
[10]
Lisheng, Ding Jilie, Zhang Qiang. Light Scattering Theory and Development of Nonspherical Particles[M]. Beijing: Meteorological Press, 2000: 180-184.[许丽生, 丁继烈, 张强. 非球形粒子光散射理论的研究, 21世纪初大气科学回顾与展望[M]. 北京: 气象出版社, 2000: 180-184.]
[11]
Jianqi, Shi Guangyu. Light scattering properties of small nonspherical particles[J]. Science Technology and Engineering, 2005, 5 (24): 1 872-1 875.[赵剑琦, 石广玉. 非球形小粒子的光散射特性[J]. 科学技术与工程, 2005, 5 (24): 1 872-1 875.]
Meng, Chen Liangfu, Li Shenshen, et al. Scattering properties of non-spherical particles in the CO2 shortwave infrared band[J].Journal of Physics, 2012, 61(20): 202-204.[范萌, 陈良富, 李莘莘, 等. 非球形气溶胶粒子短波红外散射特性研究[J]. 物理学报, 2012, 61(20): 202-204.]
[14]
M I, Hovenier J W, Travis L D. Light Scattering by Nonspherical Particles[M]. New York : Academic Press, 2000.
[15]
de Hulst H C. Light Scattering by Small Particles[M]. New York: Dover, 1981.
[16]
M I, Travis L D, Lacis A A. Scattering, Absorption, and Emission of Light by Small Particles[M]. UK: Cambridge University Press, 2002.
[17]
C F, Huffman D R. Absorption and Scattering of Light by Small Particles[M]. New York: John Wiley & Sons, 1983.
[18]
O V, Sokolik I N. Modeling the radiative properties of nonspherical soil-derived mineral aerosols[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 87: 137-166.
[19]
W C. The Particle Atlas: A Photomicrographic Reference for the Microscopical Identification of Particulate Substances[M]. New York: Ann Arbor Science, 1967.
[20]
P C. Matrix formulation of electromagnetic scattering[C]∥Proceedings of the IEEE, 1965:805-812.
[21]
M I, Travis L D, Mackowski D W. T-matrix computations of light scattering by nonspherical particles: A review[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1996, 55: 535-575.
[22]
M I. Light scattering by size-shape distributions of randomly oriented axially symmetric particles of a size comparable to a wavelength[J]. Applied Optics, 1993, 32: 4 652-4 666.
[23]
M I, Travis L D, Macke A. Scattering of light by polydisperse, randomly oriented, finite circular cylinders[J]. Applied Optics, 1996, 35: 4 927-4 940.
[24]
T. A review of elastic light scattering theories[J]. Particle & Particle Systems Characterization, 1998, 15: 67-74.
[25]
A. Optics of Light Scattering Media[M]. UK: John Wiley, 1999.
[26]
K N. An Introduction to Atmospheric Radiation[M]. New York: Academic, 2002.
[27]
F M. Numerical methods in electromagnetic scattering theory[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2003, 79/80:775-824.
[28]
S K. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1996, 14: 302-307.
[29]
A. Advances in Computational Electromagnetics[M]. Boston, MA: Artech House, 1998.
[30]
A, Hagness S C. Computational Electromagnetics[M]. Boston, MA: Artech House, 2000.
[31]
P, Liou K N. Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space[J]. Journal of the Optical Society of America, 1996, A13: 2 072-2 085.
[32]
W, Fu Q, Chen Z. Finite-difference time-domain solution of light scattering by dielectric particles with perfectly matched layer absorbing boundary conditions[J].Applied Optics, 1999, 38: 3 141-3 151.
[33]
W, Fu Q. Finite-difference time-domain solution of light scattering by dielectric particles with large complex refractive indices[J]. Applied Optics, 2000, 39: 5 569-5 578.
[34]
P, Kattawar G W, Liou K N, et al. Choice of cartesian grid configurations for applying the finite-difference time domain method to electromagnetic scattering by dielectric particles[J]. Applied Optics, 2004, 43:4 611-4 624.
[35]
A J, Yang P, Havemann S. Calculation of the single-scattering properties of randomly oriented hexagonal ice columns: A comparison of the T matrix and the finite-difference time-domain methods[J]. Applied Optics, 2001, 40: 4 376-4 386.
[36]
H M, Tranquilla J M. Electromagnetic scattering from dielectrically coated axisymmetric objects using the generalized point-matching technique I. Theoretical formulation[J]. Journal of Computational Physics, 1995, 119: 342-355.
[37]
A, Mulholland G W. On two numerical techniques for light scattering by dielectric agglomerated structures[J]. Journal of Research of the National Institute of Standards and Technology, 1993, 98(6): 699-716.
[38]
B T. The discrete dipole approximation for light scattering by irregular targets[M]∥Mischenko M I, Hovenier J W, Travis L D, eds. Light Scattering by Nonspherical Particles. New York: Academic Press, 2000.
[39]
M A, Maltsev V P, Hoekstra A G. Convergence of the discrete dipole approximation. Part I: Theoretical analysis[J]. Journal of the Optical Society of America, 2006, A23(10): 2 578-2 591.
[40]
M A, Maltsev V P, Hoekstra A G. Convergence of the discrete dipole approximation. Part II: An extrapolation technique to increase the accuracy[J]. Journal of the Optical Society of America, 2006, A23(10): 2 592-2 601.
[41]
S K, Somerford D J. Light Scattering by Optically Soft Particles: Theory and Applications[M]. Springer, Chichester, UK: Praxis Publishing Ltd, 2006.
[42]
A A. Light Scattering Reviews 3, Scattering and Reflection[M]. Springer, Chichester, UK: Praxis Publishing Ltd, 2008.
[43]
W, Fu Q. Anomalous diffraction theory for arbitrarily oriented hexagonal crystals[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1999, 63: 727-737.
[44]
Q, Sun W B, Yang P. Modeling of scattering and absorption by nonspherical cirrus ice particles at thermal infrared wavelengths[J]. Journal of the Atmospheric Scineces, 1999, 56: 2 937-2 947.
[45]
D L. Parameterization of the Mie extinction and absorption coefficients for water clouds[J]. Journal of the Atmospheric Sciences, 2000, 57: 1 311-1 326.
[46]
D L. Effective diameter in radiation transfer: Definition, applications and limitations[J]. Journal of the Atmospheric Sciences, 2002, 59: 2 330-2 346.
[47]
Q, Liou K N. Polarized light scattering by hexagonal ice crystals: Theory[J]. Applied Optics, 1982, 21: 3 569-3 580.
[48]
Z, Yang P, Kattawar G W, et al. Geometrical-optics solution to light scattering by droxtal ice crystals[J]. Applied Optics, 2004, 43: 2 490-2 499.
[49]
R, Han X, Shi L, et al. Debye series for Gaussian beam scattering by a multilayered sphere[J]. Applied Optics, 2007, 46: 4 804-4 812.
[50]
H A, Elsherbeni A Z. Electromagnetic scattering from an eccentric multilayered cylinder at oblique incidence[J]. Journal of Electromagnetic Waves and Applications, 1999, 13: 325-336.
[51]
Y, Zhang H, Sun X. Scattering of shaped beam by an arbitrarily oriented spheroid having layers with non-confocal boundaries[J]. Applied Physics B, 2006, 84: 485-492.
[52]
P W, Hill S C. Light Scattering by Particles: Computational Methods[M]. Singapore: World Scientific, 1990.
[53]
L, Kong J A, Ding K H. Scattering of Electromagnetic Waves[M]. New York: John Wiley & Sons Inc., 2000.
[54]
A, Wriedt T, Eremin Y A. Light Scattering by Systems of Particles: Null-field Method with Discrete Sources: Theory and Programs[M]. New York: Springer Series in Optical Sciences, 2006:124.
[55]
A, Wriedt T. Extended boundary condition method with multipole sources located in the complex plane[J]. Optics Communications, 1997, 139: 85-91.
[56]
M I, Videen G, Babenko V A, et al. T-matrix theory of electromagnetic scattering by particles and its applications: A comprehensive reference database[J].Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 88: 357-406.
[57]
M I, Videen G, Babenko V A, et al. Comprehensive T-matrix reference database: A 2004-2006 update[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 106: 304-324.
[58]
M I, Videen G, Babenko V A, et al. Comprehensive T-matrix reference database: A 2006-2007 update[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109: 1 447-1 460.
[59]
V G, Voshchinnikov N V. Light scattering by a multilayered spheroidal particle[J]. Applied Optics, 2012, 51(10): 1 586-1 597.