J, Aberhan M, Bottjer D J, et al. Phanerozoic trends in the global diversity of marine invertebrates[J]. Science, 2008, 321:97-100.
[2]
D H. The Great Paleozoic Crisis: Life and Death in the Permian[M]. New York:Columbia University Press, 1993.
[3]
D M. Size of the Permo-Triassic Bottleneck and its evolutionary implications[J]. Science, 1979, 206:217-218.
[4]
U, Posenato R, Came R, et al. The end-Permian mass extinction: A rapid volcanic CO2 and CH4-climatic catastrophe[J]. Chemical Geology, 2012, 322/323:121-144.
[5]
Y D, Joachimski M M, Wignall P B, et al. Lethally hot temperatures during the Early Triassic greenhouse[J]. Science, 2012, 338:366-370.
[6]
H, Planke S, Polozov A G, et al. Siberian gas venting and the end-Permian environmental crisis[J]. Earth and Planetary Science Letters, 2009, 277:490-500.
[7]
P B. Large igneous provinces and mass extinctions[J]. Earth-Science Reviews, 2001, 53:1-33.
[8]
Wenjie, Zhang Hua, Sun Yongge, et al. Evidences for the Permian-Triassic wildfire event: Review and appraisal[J]. Advances in Earth Science, 2012, 27(6):613-623.[沈文杰, 张华, 孙永革, 等. 二叠纪—三叠纪界线大火燃烧的地层记录:研究进展回顾与评述[J]. 地球科学进展, 2012, 27(6):613-623.]
[9]
T J, Hinnov L, Moser J, et al. Changes in productivity and redox conditions in the Panthalassic Ocean during the latest Permian[J]. Geology, 2010, 38:187-190.
[10]
K, Cao C, Love G D, et al. Photic zone euxinia during the Permian-Triassic superanoxic event[J]. Science, 2005, 307:706-709.
[11]
Y. Permo-Triassic boundary superanoxia and stratified superocean: Records from lost deep sea[J]. Science, 1997, 276:235-238.
[12]
L R, Pavlov A, Arthur M A. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia[J]. Geology, 2005, 33:397-400.
[13]
P B, Hallam A. Anoxia as a cause of the Permian/Triassic mass extinction: Facies evidence from northern Italy and the western United States[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1992, 93:21-46.
[14]
P B, Twitchett R J. Oceanic anoxia and the end-Permian Mass extinction[J]. Science, 1996, 272:1 155-1 158.
[15]
P B, Twitchett R J. Extent, duration, and nature of the Permian-Triassic superanoxic event[M]\\Koeberl C, MacLeod K C, eds. Catastrophic Events and Mass Extinctions: Impacts and Beyond. Colorado:Boulder, 2002:395-413.
[16]
Y G, Wang Y, Wang W, et al. Pattern of marine mass extinction near the Permian-Triassic boundary in South China[J]. Science, 2000, 289:432-436.
[17]
S Z, Crowley J L, Wang Y, et al. Calibrating the end-Permian mass extinction[J]. Science, 2011, 334:1 367-1 372.
[18]
J, Chen Z Q, Tong J N. Environmental determinants and ecologic selectivity of benthic faunas from nearshore to bathyal zones in the end-Permian mass extinction: Brachiopod evidence from South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308:84-97.
[19]
Z Q, Tong J N, Zhang K X, et al. Environmental and biotic turnover across the Permian-Triassic boundary on a shallow carbonate platform in western Zhejiang, South China[J]. Australian Journal of Earth Sciences, 2009, 56:775-797.
[20]
H, Wignall P B, Tong J, et al. Two pulses of extinction during the Permian-Triassic crisis[J]. Nature Geoscience, 2013, 6:52-56.
[21]
H J, Tong J, Chen Z Q. Two episodes of foraminiferal extinction near the Permian-Triassic boundary at the Meishan section, South China[J]. Australian Journal of Earth Sciences, 2009, 56:765-773.
[22]
S C, Pancost R D, Yin H F, et al. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction[J]. Nature, 2005, 434:494-497.
[23]
H F, Xie S C, Luo G M, et al. Two episodes of environmental change at the Permian-Triassic boundary of the GSSP section Meishan[J]. Earth-Science Reviews, 2012, 115:163-172.
[24]
Jinhua. Macroevolution of bivalvia after the end-Permian mass extinction in South China[M]\\Rong Jiayu, Fang Zongjie, eds. Mass Extinction and Recovery Evidences from the Palaeozoic and Triassic of South China. Hefei:University of Science and Technology of China Press, 2004:647-700.[陈金华. 华南二叠纪末大灭绝后双壳类的宏演化阶段[M]\\戎嘉余, 方宗杰. 生物大灭绝与复苏——来自华南古生代和三叠纪的证据. 合肥:中国科学技术大学出版社, 2004:647-700.]
[25]
Zunyi, Yin Hongfu, Wu Shunbao, et al. Permian and Triassic Boundary Stratigraphy and Faunas of South China[M]. Beijing: Geological Publishing House, 1987.[杨遵仪, 殷鸿福, 吴顺宝, 等. 华南二叠—三叠系界线地层及其动物群[M]. 北京:地质出版社, 1987.]
[26]
A, Wignall P B. Mass Extinctions and Their Aftermath[M]. New York:Oxford University Press, 1997.
[27]
J J. A factor analytic description of the Phanerozoic marine fossil record[J]. Paleobiology, 1981, 7:36-53.
[28]
M L, Bottjer D J. When bivalves took over the world[J]. Paleobiology, 2007, 33:397-413.
[29]
L A, Tullis A, Ward P D. Comparison of oxygen consumption by Terebratalia transversa (Brachiopoda) and two species of pteriomorph bivalve molluscs: Implications for surviving mass extinctions[J]. Paleobiology, 2012, 38:525-537.
[30]
S J, Calloway C B. Clams and brachiopods-ships that pass in the night[J]. Paleobiology, 1980, 6:383-396.
[31]
R H, Thayer C W. Articulate fecundity in the Phanerozoic: Steady state or what?[M]\\Mackinnon D I, Lee D E, Campbell J D, eds. Brachiopods through Time. Rotterdam:A. A. Balkema, 1991:183-190.
[32]
H M. The physiological differences between articulate brachiopods and filter-feeding bivalves as a factor in the evolution of marine level-bottom communities[J]. Palaeontology, 1979, 22:101-134.
[33]
C W. Brachiopods versus mussels: Competition, predation, and palatability[J]. Science, 1985, 228:1 527-1 528.
[34]
C W. Are brachiopods better than bivalves? Mechanisms of turbidity tolerance and their interaction with feeding in articulates[J]. Paleobiology, 1986, 12:161-174.
[35]
J K, Bottjer D J. Aftermath of the Permian-Triassic mass extinction event: Paleoecology of Lower Triassic carbonates in the western USA[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1995, 116:1-39.
[36]
D J, Clapham M E, Fraiser M L, et al. Understanding mechanisms for the end-Permian mass extinction and the protracted Early Triassic aftermath and recovery[J]. GSA Today, 2008, 18:4-10.
[37]
T, Chen Z Q, Fraiser M L, et al. Terrestrial-marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308:1-11.
[38]
M L, Bottjer D J. Elevated atmospheric CO2 and the delayed biotic recovery from the end-Permian mass extinction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 252:164-175.
[39]
S E, Beauchamp B, Embry A, et al. Recurrent Early Triassic ocean anoxia[J]. Geology, 2013, 41:175-178.
[40]
J L, Lehrmann D J, Wei J, et al. Large perturbations of the carbon cycle during recovery from the end-Permian extinction[J]. Science, 2004, 305:506-509.
[41]
H J, Wignall P B, Tong J N, et al. Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian-Triassic transition and the link with end-Permian extinction and recovery[J]. Earth and Planetary Science Letters, 2012, 353/354:12-21.
[42]
Keke, Huang Sijing, Lan Yefang, et al. Review of the carbon isotope of early Triassic Carbonates[J]. Advances in Earth Science, 2013, 28(3):357-365.[黄可可, 黄思静, 兰叶芳, 等. 早三叠世海相碳酸盐碳同位素研究进展[J]. 地球科学进展, 2013, 28(3):357-365.]
[43]
G A. Petrefacta Germaniae Tam ea, Quae in Museo Universitatis Regiae Borussicae Fridericae Wilhelmiae Rhenanae Servantur Quam Alia Quaecunque in Museis Hoeninghusino, Muensteriano Aliisque Extant, Iconibus et Descriptionibus Illustrate[M]. Dusseldorf:Verlag lithographische Anstalt Arnz 7& Co., 1838.
[44]
Hauer E. Ueber die Vom Herrn Bergrath W. Fuchs in den Venetianer Alpen gesammelten Fossilen[J]. Denkschriften der Kaiserl Akademie der Wissenschaften Wien, 1850, 2:109-126.
[45]
R. Das Westliche Sud-Tirol Geologisch Dargestellt[M]. Berlin:Verlag von Wilhelm Hertz, 1878.
[46]
A. Beitrage zur Palaeontologie, insbesondere der triadischen Ablagerungen centralasiatischer Hochgebirge[J]. Jahrbuch der Kaiserlich-Koniglichen Geologischen Reichsanstalt, 1898, 48:689-718.
[47]
P. Die Brachiopoden und Lamellibranchiaten der Oberschlesischen Trias[J]. Jahrbuch der Koniglich Preufsischen Geologischen Landesanstalt, 1915, 36:586-638.
[48]
Gordon M M. Das Grodener-, Fassa-und Enneberggebient in den Sudtiroler Dolomiten, III Teil Palaontologie[J]. Abhandlungen der Geologischen Bundesanstalt, 1927, 24:1-89.
[49]
P. Trias inferiore delle Venezie[J]. Memorie dell'Istituto Geologica della R. Universita di Padova, 1935, 11:1-136.
[50]
A. Versteinerungen aus den Trias-Ablagerungen des Sud-Ussuri-Gebietes in der ostsibirischen Kustenprovinz[J]. Memoires du Comite Geologique, 1899, 7:1-35.
[51]
L. The Lower Triassic pelecypoda of the ussuriland[J]. Trudy Geologicheskogo Instituta, 1938, 7:197-311.
[52]
P V. Einige Lamellibranchiata der Salt-Range, mit Berucksichtigung der Lamellibranchiata des Sud-Ussuri-Gebiets[J]. Neues Jahrbuch fur Mineralogie, Geologie und Palaontologie, 1909, 1:6-13.
[53]
A. Trias brachiopoda and lamellibranchiata[J]. Palaontologia Indica, 1899, 3:1-76.
[54]
C. Triassic fauna of Kashmir[J]. Palaontologia Indica, New Series, 1913, 5:1-133.
[55]
K. On claraia of Kashmir and Iran[J]. Journal of the Paleontological Society of India, 1977, 20:191-204.
[56]
K. Permian and Triassic bivalves from Kashmir[J]. Memoirs of the Geological Survey of India, Palaeontologia Indica, new Series, 1981, 46:87-122.
[57]
H. Notes on some interesting fossils from South China[J]. Japanese Journal of Geology and Geography, 1928, 6:19-25.
[58]
T. Contribution to the marine Lower Triassic Fauna of Southern China[J]. Bulletin of the Geological Society of China, 1937, 16:303-346.
[59]
T. Notes on the Triassic formations and faunas of the Yuan-an district, Western Hupeh[J]. Bulletin of the Geological Society of China, 1938, 17:363-391.
[60]
E. Fossiles Paleozoiques et Mesozoiques du SudQuest de la Chine[J]. Palaeontologia Sinica (Series B), 1935, 15:1-51.
[61]
E. Beitrage zur Kenntnis der Trias in der Provinz Szechuan, West-China[J]. Neues Jahrbuch fur Mineralogie, Geologie und Palaontologie, 1936, 75:412-446.
G H. Descriptions of new species of Carboniferous and Triassic fossils[J]. U.S. Geological Survey Professional Paper, 1927, 152:437-447.
[64]
N D, Kummel B. Lower Eo-Triassic stratigraphy, western Wyoming and Southeast Idaho[J]. Bulletin of the Geological Society of America, 1942, 53:937-996.
[65]
K W. Permian and Eotriassic bivalves of the middle rockies[J]. Bulletin of the American Museum of Natural History, 1963, 125:1-100.
[66]
J M, McTavish R A. Lower Triassic marine fossils from the Beagle Ridge (BMR 10) Bore, Perth Basin, Western Australia[J]. Journal of the Geological Society of Australia, 1963, 10:123-140.
[67]
L F. The Eotriassic Invertebrate fauna of East Greenland[J]. Meddelingen om Gronland, 1930, 83:1-90.
[68]
L F. Additions to the Eo-Triassic invertebrate fauna of East Greenland[J]. Meddelingen om Gronland, 1935, 98:1-115.
[69]
K. Discovery of Claraia and Eumorphotis from Triassic Yakuno Group, Kyoto Pref., Japan[J]. Memoirs of the College of Science, University of Kyoto (Series B), 1953, 20:261-269.
[70]
K, Yabe Y. Eumorphotis multiformis shionosawensis, subsp. nov. from the Shionosawa limestone at Shionosawa, North of the Sanchu Graben, Kwanto Mountainland, Japan[J]. Transactions and Proceedings of Palaeontological Society of Japan, 1955, 17:5-12.
[71]
K. Permian and Eo-Triassic Bakevellias from the Maizuru Zone, Southwest Japan[J]. Memoirs of the College of Science, University of Kyoto (Series B), 1959, 26:193-213.
[72]
K. Permian and Eo-Triassic Myophoriidae from the Maizuru Zone, Southwest Japan[J]. Journal of Geology and Geography, 1960, 31:49-62.
[73]
K. Early and middle Triassic Pelecypod-fossils from the Maizuru zone, southwest Japan[J]. Memoirs of the College of Science, University of Kyoto (Series B), 1961, 27:249-291.
[74]
K. The Lower Triassic Kurotaki Fauna in Shikoku and its allied Faunas in Japan[J]. Memoirs of the Faculty of Science, Kyoto University, Series of Geology and Mineralogy, 1971, 38:103-133.
[75]
M. Claraia from North Malaya, with a note on the distribution of Claraia in Southeast Asia[J].Contributions to the Geology and Palaeontology of Southeast Asia, 1968, 59:78-86.
[76]
K, Yin E H. Discovery of Early Triassic bivalves from Kelantan, Malaya[J]. Journal of Geosciences, Osaka City University, 1966, 9:101-108.
[77]
Y, Oji T. Low-diversity shallow marine benthic fauna from the Smithian of northeast Japan: Paleoecologic and paleobiogeographic implications[J]. Paleontological Research, 2004, 8:199-218.
[78]
W, Feng Q, Welden E A, et al. A late Permian to Early Triassic bivalve fauna from the Dongpan section, southern Guangxi, South China[J]. Journal of Paleontology, 2007, 81:1 009-1 019.
[79]
T, Nakazawa K. Bivalves[M]\\Shigeta Y, Zakharov Y D, Maeda H, et al, eds. The Lower Triassic System in the Abrek Bay Area, South Primorye, Russia. Tokyo:National Museum of Nature and Science, 2009:156-173.
[80]
M, Bucher H, Bruhwiler T, et al. An unusually diverse mollusc fauna from the earliest Triassic of South China and its implications for benthic recovery after the end-Permian biotic crisis[J]. Geobios, 2011, 44:71-85.
[81]
M, Hautmann M, Hermann E, et al. Olenekian (Early Triassic) bivalves from the Salt Range and Surghar Range, Pakistan[J]. Palaeontology, 2012, 55:1 043-1 076.
[82]
M, Smith A B, McGowan A J, et al. Bivalves from the Olenekian (Early Triassic) of south-western Utah: Systematics and evolutionary significance[J]. Journal of Systematic Palaeontology, 2013, 11:263-293.
[83]
Loriga C, Masetti D, Neri C. La Formazione di Werfen (Scitico) delle Dolomiti occidental[J]. Rivista Italiana di Paleontologia e Stratigrafia, 1983, 88:501-598.
[84]
Loriga C, Posenato R. Costatoria subrotunda (Bittner, 1901) a Smithian (Lower) Triassic Marker from Tethys[J]. Rivista Italiana di Paleontologia e Stratigrafia, 1986, 92:189-200.
[85]
Hongfu. Bivalves near the Permian—Triassic boundary in South China[J]. Geological Review, 1983, 29(4):303-320.[殷鸿福. 古生代、中生代之交的华南双壳类——分带、对比与危机[J]. 地质论评, 1983, 29(4):303-320.]
[86]
Faming. New materials of bivalves from the Early Triassic in Fujian[J]. Acta Palaeontologica Sinica, 1985, 24(4):395-402.[吴发明. 福建早三叠世双壳类新材料[J]. 古生物学报, 1985, 24(4):395-402.]
[87]
T, Dang T H. Lower Triassic bivalve fossils from the Song Da and an Chau Basins, North Vietnam[J]. Paleontological Research, 2007, 11:135-144.
[88]
K, Runnegar B. The Permian-Triassic boundary: A crisis for bivalves?[M]\\Logan A, Hills L V, eds. The Permian and Triassic Systems and Their Mutual Boundary-Memoir 2. Calgary:Canadian Society of Petroleum Geologists, 1973:608-621.
[89]
H F. Bivalves near the Permian-Triassic boundary in South China[J]. Journal of Paleontology, 1985, 59:572-600.
[90]
Ling. Evolutionary change of bivalves from Changxingian to Griesbachian in South China[J]. Acta Palaeontologica Sinica, 1995, 34(3):350-369.[李玲. 华南长兴期至格里斯巴赫期双壳类的演替[J]. 古生物学报, 1995, 34(3):350-369.]
[91]
C A. Triassic bivalves and the initial marine Mesozoic revolution: A role for predators?[J]. Geology, 2001, 29:359-362.
[92]
Zongjie. Approach to the rxtinction pattern of Permian Bivalvia of South China[M]\\Rong Jiayu, Fang Zongjie, eds. Mass Extinction and Recovery Evidences from the Palaeozoic and Triassic of South China. Hefei:University of Science and Technology of China Press, 2004: 571-646.[方宗杰. 华南二叠纪双壳类动物群灭绝型式的探讨[M]\\戎嘉余, 方宗杰. 生物大灭绝与复苏——来自华南古生代和三叠纪的证据[M]. 合肥:中国科学技术大学出版社, 2004:571-646.]
[93]
R. Patterns of bivalve biodiversity from Early to Middle Triassic in the Southern Alps (Italy): Regional vs. global events[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 261:145-159.
[94]
R. Survival patterns of macrobenthic marine assemblages during the end-Permian mass extinction in the western Tethys (Dolomites, Italy)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280:150-167.
[95]
Z Q, Tong J N, Liao Z T, et al. Structral changes of marine communities over the Permian-Triassic transitions: Ecologically assessing the End-Permian mass extinction and its aftermath[J]. Global and Planetary Change, 2010, 73:123-140.
[96]
R, Hautmann M, Brayard A, et al. Recovery of Benthic marine communities from the end-Permian mass extinction at the low latitudes of eastern Panthalassa[J]. Palaeontology, 2013, 57:547-589.
[97]
R, Hautmann M, Bucher H. A new paleoecological look at the Dinwoody Formation (Lower Triassic, Western USA): Intrinsic versus extrinsic controls on ecosystem recovery after the end-Permian mass extinction[J]. Journal of Paleontology, 2013, 87:854-880.
[98]
R, Hautmann M, Wasmer M, et al. Palaeoecology of the Spathian Virgin Formation (Utah, USA) and its implications for the Early Triassic recovery[J]. Acta Palaeontologica Polonica, 2013, 58:149-173.
[99]
R. Global correlations of mid Early Triassic events: The Induan/Olenekian boundary in the Dolomites (Italy)[J]. Earth-Science Reviews, 2008, 91:93-105.
[100]
R J. The Lilliput effect in the aftermath of the end-Permian extinction event[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 252:132-144.
[101]
I, Twitchett R J, Price-Lloyd N. Changes in size and growth rate of ‘Lilliput’ animals in the earliest Triassic[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308:171-180.
[102]
Y D, Shigeta A M, Popov A N, et al. The candidates of global stratotype of the boundary of the Induan and Olenekian stages of the Lower Triassic in southern Primorye[J]. Albertiana, 2000, 24:12-26.
[103]
Yanxia, Xu Donglai, Tong Jinnan. A preliminary study on the Lower Triassic strata of Sidazhai, Ziyun, Guizhou Province[J]. Journal of Stratigraphy, 2006, 30(2):177-182.[胡艳霞, 徐东来, 童金南. 贵州紫云四大寨早三叠世地层初步研究[J]. 地层学杂志, 2006, 30(2):177-182.]
[104]
Hui, Tong Jinnan, Ren Jiangbo, et al. Early Triassic bivalve biostratigraphy and paleocommunities at Xiakou section in Xingshan, Hubei Province[J]. Earth Science—Journal of China University of Geosciences, 2009, 34(5):733-742.[李慧, 童金南, 任江波, 等. 湖北兴山峡口早三叠世双壳类生物地层及古群落分析[J]. 地球科学——中国地质大学学报, 2009, 34(5):733-742.]
[105]
J, Wu S, Li Z, et al. Lower Triassic bivalves from Chaohu, Anhui Province, China[J]. Albertiana, 2006, 34:42-51.
T H. Lower Triassic bivalves from the Hong Ngai Formation (Song Hien structural zone)[J]. Journal of Geology (Series B), 1998, 11/12:95-104.
[108]
T, Dang T H, Chen C C. Lower Triassic bivalve assemblages after the end-Permian mass extinction in South China and North Vietnam[J]. Paleontological Research, 2008, 12:119-128.
[109]
K, Shigeta Y, Dang T H, et al. Crittendenia (Bivalvia) from the Lower Triassic (Olenekian) Bac Thuy Formayion, an Chau Basin, Northern Vietnam[J]. Paleontological Research, 2013, 17:1-11.
[110]
C A. Biochronology of Triassic bivalves[J]. Geological Society, London, Special Publications, 2010, 334:201-219.
[111]
S, He X, Shi G. Biostratigraphy and correlation of several Permian-Triassic boundary sections in southwestern China[J]. Journal of Southeast Asian Earth Sciences, 1995, 12:19-30.
[112]
Yuntao, Yu Jianxin, Feng Qinglai. The discovery of Ophiceras in the Kayitou Formation in eastern Yunnan Province and its significance[J]. Journal of Stratigraphy, 2008, 32(2):153-158.[田云涛, 喻建新, 冯庆来. Ophiceras (蛇菊石)在滇东卡以头组的发现及其意义[J]. 地层学杂志, 2008, 32(2):153-158.]
[113]
Hongfu. Palaeogeographical and stratigraphical distribution of the Lower Triassic Claraia and Eumorphotis (Bivalvia)[J]. Acta Geologica Sinica, 1981, 55(3):161-169.[殷鸿福. 克氏蛤和正海扇的分布及其地质意义[J]. 地质学报, 1981, 55(3):161-169.]
[114]
A, Miller A I. Extinction and survival in the Bivalvia[M]\\Larwood G P, ed. Extinction and Survival in the Fossil Record. Oxford:Clarendon Press, 1988:121-138.
[115]
M E, Payne J L. Acidification, anoxia, and extinction: A multiple logistic regression analysis of extinction selectivity during the Middle and Late Permian[J]. Geology, 2011, 39:1 059-1 062.
[116]
C A, Newton C R. Selective extinction among end-Triassic European bivalves[J]. Geology, 1995, 23:102-104.
[117]
S, Echevarria J. Ecological signature of the end-Triassic biotic crisis: What do bivalves have to say?[J]. Historical Biology, 2012, 24:489-503.
[118]
Jinhua, Stiller F, Komatsu T. A bivalve radiation after the end-Permian mass extinction[J]. Science Technology and Engineering, 2003, 3(5):415-420.[陈金华, Stiller F, 小松俊文. 二叠纪末大灭绝后双壳类新的辐射[J]. 科学技术与工程, 2003, 3(5):415-420.]
[119]
T, Chen J, Cao M, et al. Middle Triassic (Anisian) diversified bivalves: Depositional environments and bivalve assemblages in the Leidapo Member of the Qingyan Formation, southern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 208:207-223.
[120]
M J. Conodont diversity and evolution through the latest Permian and Early Triassic upheavals[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 252:93-117.
[121]
A, Escarguel G, Bucher H, et al. Good genes and good luck: Ammonoid diversity and the end-Permian mass extinction[J]. Science, 2009, 325:1 118-1 121.
[122]
H J, Tong J N, Chen Z Q. Evolutionary dynamics of the Permian-Triassic foraminifer size: Evidence for Lilliput effect in the end-Permian mass extinction and its aftermath[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308:98-110.
[123]
D L, Bottjer D J, Droser M L. Ecological signature of Lower Triassic shell beds of the Western United States[J]. Palaios, 2004, 19:372-380.
[124]
A. Biotic crises in the history of Upper Silurian graptoloid: A palaeobiological model[J]. Historical Biology, 1993, 7:29-50.
[125]
H J, Wignall P B, Chen Z Q, et al. Recovery tempo and pattern of marine ecosystems after the end-Permian mass extinction[J]. Geology, 2011, 39:739-742.
[126]
I. Size changes of bivalves and a hypothesis about the cause of mass extinction[J]. Fossils, 1997, 62:24-36.
[127]
I. Ecology of mass extinctions: The diversity and shell size of bivalves through time[J]. Iden, 1998, 52:38-44.
[128]
M L, Bottjer D J. The non-actualistic Early Triassic gastropod Fauna: A case study of the Lower Triassic Sinbad Limestone Member[J]. Palaios, 2004, 19:259-275.
[129]
J L. Evolution dynamics of Gastropod size across the end-Permian extinction and through the Triassic recovery interval[J]. Paleobiology, 2005, 31:269-290.