全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

古-中生代之交双壳类演变研究进展

DOI: 10.11867/j.issn.1001-8166.2014.08.0922, PP. 922-933

Keywords: 晚二叠世,早三叠世,双壳类,生物灭绝,生物复苏

Full-Text   Cite this paper   Add to My Lib

Abstract:

古—中生代之交,伴随着显生宙历史上最大的生物灭绝,发生了最大的一次生态系结构变革,软体动物双壳类取代了腕足类在底栖生态系中的主导地位。以中国南方为代表的特提斯地区晚二叠世末至早三叠世良好的地层记录和丰富的双壳类化石材料为该时期双壳类及底栖生态系的演化研究提供了良好条件。通过系统收集和整理全球范围内该时期各地区有关双壳类的研究资料及主要成果,建立各个地区双壳类带的对比关系,并对30年来的双壳类生物地层工作做了简要的总结。从分异度和生态特征等角度来说,双壳类在二叠纪—三叠纪之交的生物危机中表现出了中等程度的灭绝,并在经历了长时间的迟缓复苏后,于早三叠世Spathian期进入了一个较快速的复苏阶段,但是直到中三叠世安尼期才真正进入快速分异辐射。在这漫长的复苏过程中,以Claraia和Eumorphotis等为代表的双壳类属种广泛分布于各种相区,这些分子的繁盛与消亡过程和机制仍需要深入探讨。

References

[1]  J, Aberhan M, Bottjer D J, et al. Phanerozoic trends in the global diversity of marine invertebrates[J]. Science, 2008, 321:97-100.
[2]  D H. The Great Paleozoic Crisis: Life and Death in the Permian[M]. New York:Columbia University Press, 1993.
[3]  D M. Size of the Permo-Triassic Bottleneck and its evolutionary implications[J]. Science, 1979, 206:217-218.
[4]  U, Posenato R, Came R, et al. The end-Permian mass extinction: A rapid volcanic CO2 and CH4-climatic catastrophe[J]. Chemical Geology, 2012, 322/323:121-144.
[5]  Y D, Joachimski M M, Wignall P B, et al. Lethally hot temperatures during the Early Triassic greenhouse[J]. Science, 2012, 338:366-370.
[6]  H, Planke S, Polozov A G, et al. Siberian gas venting and the end-Permian environmental crisis[J]. Earth and Planetary Science Letters, 2009, 277:490-500.
[7]  P B. Large igneous provinces and mass extinctions[J]. Earth-Science Reviews, 2001, 53:1-33.
[8]  Wenjie, Zhang Hua, Sun Yongge, et al. Evidences for the Permian-Triassic wildfire event: Review and appraisal[J]. Advances in Earth Science, 2012, 27(6):613-623.[沈文杰, 张华, 孙永革, 等. 二叠纪—三叠纪界线大火燃烧的地层记录:研究进展回顾与评述[J]. 地球科学进展, 2012, 27(6):613-623.]
[9]  T J, Hinnov L, Moser J, et al. Changes in productivity and redox conditions in the Panthalassic Ocean during the latest Permian[J]. Geology, 2010, 38:187-190.
[10]  K, Cao C, Love G D, et al. Photic zone euxinia during the Permian-Triassic superanoxic event[J]. Science, 2005, 307:706-709.
[11]  Y. Permo-Triassic boundary superanoxia and stratified superocean: Records from lost deep sea[J]. Science, 1997, 276:235-238.
[12]  L R, Pavlov A, Arthur M A. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia[J]. Geology, 2005, 33:397-400.
[13]  P B, Hallam A. Anoxia as a cause of the Permian/Triassic mass extinction: Facies evidence from northern Italy and the western United States[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1992, 93:21-46.
[14]  P B, Twitchett R J. Oceanic anoxia and the end-Permian Mass extinction[J]. Science, 1996, 272:1 155-1 158.
[15]  P B, Twitchett R J. Extent, duration, and nature of the Permian-Triassic superanoxic event[M]\\Koeberl C, MacLeod K C, eds. Catastrophic Events and Mass Extinctions: Impacts and Beyond. Colorado:Boulder, 2002:395-413.
[16]  Y G, Wang Y, Wang W, et al. Pattern of marine mass extinction near the Permian-Triassic boundary in South China[J]. Science, 2000, 289:432-436.
[17]  S Z, Crowley J L, Wang Y, et al. Calibrating the end-Permian mass extinction[J]. Science, 2011, 334:1 367-1 372.
[18]  J, Chen Z Q, Tong J N. Environmental determinants and ecologic selectivity of benthic faunas from nearshore to bathyal zones in the end-Permian mass extinction: Brachiopod evidence from South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308:84-97.
[19]  Z Q, Tong J N, Zhang K X, et al. Environmental and biotic turnover across the Permian-Triassic boundary on a shallow carbonate platform in western Zhejiang, South China[J]. Australian Journal of Earth Sciences, 2009, 56:775-797.
[20]  H, Wignall P B, Tong J, et al. Two pulses of extinction during the Permian-Triassic crisis[J]. Nature Geoscience, 2013, 6:52-56.
[21]  H J, Tong J, Chen Z Q. Two episodes of foraminiferal extinction near the Permian-Triassic boundary at the Meishan section, South China[J]. Australian Journal of Earth Sciences, 2009, 56:765-773.
[22]  S C, Pancost R D, Yin H F, et al. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction[J]. Nature, 2005, 434:494-497.
[23]  H F, Xie S C, Luo G M, et al. Two episodes of environmental change at the Permian-Triassic boundary of the GSSP section Meishan[J]. Earth-Science Reviews, 2012, 115:163-172.
[24]  Jinhua. Macroevolution of bivalvia after the end-Permian mass extinction in South China[M]\\Rong Jiayu, Fang Zongjie, eds. Mass Extinction and Recovery Evidences from the Palaeozoic and Triassic of South China. Hefei:University of Science and Technology of China Press, 2004:647-700.[陈金华. 华南二叠纪末大灭绝后双壳类的宏演化阶段[M]\\戎嘉余, 方宗杰. 生物大灭绝与复苏——来自华南古生代和三叠纪的证据. 合肥:中国科学技术大学出版社, 2004:647-700.]
[25]  Zunyi, Yin Hongfu, Wu Shunbao, et al. Permian and Triassic Boundary Stratigraphy and Faunas of South China[M]. Beijing: Geological Publishing House, 1987.[杨遵仪, 殷鸿福, 吴顺宝, 等. 华南二叠—三叠系界线地层及其动物群[M]. 北京:地质出版社, 1987.]
[26]  A, Wignall P B. Mass Extinctions and Their Aftermath[M]. New York:Oxford University Press, 1997.
[27]  J J. A factor analytic description of the Phanerozoic marine fossil record[J]. Paleobiology, 1981, 7:36-53.
[28]  M L, Bottjer D J. When bivalves took over the world[J]. Paleobiology, 2007, 33:397-413.
[29]  L A, Tullis A, Ward P D. Comparison of oxygen consumption by Terebratalia transversa (Brachiopoda) and two species of pteriomorph bivalve molluscs: Implications for surviving mass extinctions[J]. Paleobiology, 2012, 38:525-537.
[30]  S J, Calloway C B. Clams and brachiopods-ships that pass in the night[J]. Paleobiology, 1980, 6:383-396.
[31]  R H, Thayer C W. Articulate fecundity in the Phanerozoic: Steady state or what?[M]\\Mackinnon D I, Lee D E, Campbell J D, eds. Brachiopods through Time. Rotterdam:A. A. Balkema, 1991:183-190.
[32]  H M. The physiological differences between articulate brachiopods and filter-feeding bivalves as a factor in the evolution of marine level-bottom communities[J]. Palaeontology, 1979, 22:101-134.
[33]  C W. Brachiopods versus mussels: Competition, predation, and palatability[J]. Science, 1985, 228:1 527-1 528.
[34]  C W. Are brachiopods better than bivalves? Mechanisms of turbidity tolerance and their interaction with feeding in articulates[J]. Paleobiology, 1986, 12:161-174.
[35]  J K, Bottjer D J. Aftermath of the Permian-Triassic mass extinction event: Paleoecology of Lower Triassic carbonates in the western USA[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1995, 116:1-39.
[36]  D J, Clapham M E, Fraiser M L, et al. Understanding mechanisms for the end-Permian mass extinction and the protracted Early Triassic aftermath and recovery[J]. GSA Today, 2008, 18:4-10.
[37]  T, Chen Z Q, Fraiser M L, et al. Terrestrial-marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308:1-11.
[38]  M L, Bottjer D J. Elevated atmospheric CO2 and the delayed biotic recovery from the end-Permian mass extinction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 252:164-175.
[39]  S E, Beauchamp B, Embry A, et al. Recurrent Early Triassic ocean anoxia[J]. Geology, 2013, 41:175-178.
[40]  J L, Lehrmann D J, Wei J, et al. Large perturbations of the carbon cycle during recovery from the end-Permian extinction[J]. Science, 2004, 305:506-509.
[41]  H J, Wignall P B, Tong J N, et al. Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian-Triassic transition and the link with end-Permian extinction and recovery[J]. Earth and Planetary Science Letters, 2012, 353/354:12-21.
[42]  Keke, Huang Sijing, Lan Yefang, et al. Review of the carbon isotope of early Triassic Carbonates[J]. Advances in Earth Science, 2013, 28(3):357-365.[黄可可, 黄思静, 兰叶芳, 等. 早三叠世海相碳酸盐碳同位素研究进展[J]. 地球科学进展, 2013, 28(3):357-365.]
[43]  G A. Petrefacta Germaniae Tam ea, Quae in Museo Universitatis Regiae Borussicae Fridericae Wilhelmiae Rhenanae Servantur Quam Alia Quaecunque in Museis Hoeninghusino, Muensteriano Aliisque Extant, Iconibus et Descriptionibus Illustrate[M]. Dusseldorf:Verlag lithographische Anstalt Arnz 7& Co., 1838.
[44]  Hauer E. Ueber die Vom Herrn Bergrath W. Fuchs in den Venetianer Alpen gesammelten Fossilen[J]. Denkschriften der Kaiserl Akademie der Wissenschaften Wien, 1850, 2:109-126.
[45]  R. Das Westliche Sud-Tirol Geologisch Dargestellt[M]. Berlin:Verlag von Wilhelm Hertz, 1878.
[46]  A. Beitrage zur Palaeontologie, insbesondere der triadischen Ablagerungen centralasiatischer Hochgebirge[J]. Jahrbuch der Kaiserlich-Koniglichen Geologischen Reichsanstalt, 1898, 48:689-718.
[47]  P. Die Brachiopoden und Lamellibranchiaten der Oberschlesischen Trias[J]. Jahrbuch der Koniglich Preufsischen Geologischen Landesanstalt, 1915, 36:586-638.
[48]  Gordon M M. Das Grodener-, Fassa-und Enneberggebient in den Sudtiroler Dolomiten, III Teil Palaontologie[J]. Abhandlungen der Geologischen Bundesanstalt, 1927, 24:1-89.
[49]  P. Trias inferiore delle Venezie[J]. Memorie dell'Istituto Geologica della R. Universita di Padova, 1935, 11:1-136.
[50]  A. Versteinerungen aus den Trias-Ablagerungen des Sud-Ussuri-Gebietes in der ostsibirischen Kustenprovinz[J]. Memoires du Comite Geologique, 1899, 7:1-35.
[51]  L. The Lower Triassic pelecypoda of the ussuriland[J]. Trudy Geologicheskogo Instituta, 1938, 7:197-311.
[52]  P V. Einige Lamellibranchiata der Salt-Range, mit Berucksichtigung der Lamellibranchiata des Sud-Ussuri-Gebiets[J]. Neues Jahrbuch fur Mineralogie, Geologie und Palaontologie, 1909, 1:6-13.
[53]  A. Trias brachiopoda and lamellibranchiata[J]. Palaontologia Indica, 1899, 3:1-76.
[54]  C. Triassic fauna of Kashmir[J]. Palaontologia Indica, New Series, 1913, 5:1-133.
[55]  K. On claraia of Kashmir and Iran[J]. Journal of the Paleontological Society of India, 1977, 20:191-204.
[56]  K. Permian and Triassic bivalves from Kashmir[J]. Memoirs of the Geological Survey of India, Palaeontologia Indica, new Series, 1981, 46:87-122.
[57]  H. Notes on some interesting fossils from South China[J]. Japanese Journal of Geology and Geography, 1928, 6:19-25.
[58]  T. Contribution to the marine Lower Triassic Fauna of Southern China[J]. Bulletin of the Geological Society of China, 1937, 16:303-346.
[59]  T. Notes on the Triassic formations and faunas of the Yuan-an district, Western Hupeh[J]. Bulletin of the Geological Society of China, 1938, 17:363-391.
[60]  E. Fossiles Paleozoiques et Mesozoiques du SudQuest de la Chine[J]. Palaeontologia Sinica (Series B), 1935, 15:1-51.
[61]  E. Beitrage zur Kenntnis der Trias in der Provinz Szechuan, West-China[J]. Neues Jahrbuch fur Mineralogie, Geologie und Palaontologie, 1936, 75:412-446.
[62]  Zhiwei, Huang Baoyu, Chen Chuzhen, et al. Fossil Lamellibranchiata of China[M]. Beijing: Science Press, 1976.[顾知微, 黄宝玉, 陈楚震, 等. 中国的瓣鳃类化石[M]. 北京:科学出版社, 1976.]
[63]  G H. Descriptions of new species of Carboniferous and Triassic fossils[J]. U.S. Geological Survey Professional Paper, 1927, 152:437-447.
[64]  N D, Kummel B. Lower Eo-Triassic stratigraphy, western Wyoming and Southeast Idaho[J]. Bulletin of the Geological Society of America, 1942, 53:937-996.
[65]  K W. Permian and Eotriassic bivalves of the middle rockies[J]. Bulletin of the American Museum of Natural History, 1963, 125:1-100.
[66]  J M, McTavish R A. Lower Triassic marine fossils from the Beagle Ridge (BMR 10) Bore, Perth Basin, Western Australia[J]. Journal of the Geological Society of Australia, 1963, 10:123-140.
[67]  L F. The Eotriassic Invertebrate fauna of East Greenland[J]. Meddelingen om Gronland, 1930, 83:1-90.
[68]  L F. Additions to the Eo-Triassic invertebrate fauna of East Greenland[J]. Meddelingen om Gronland, 1935, 98:1-115.
[69]  K. Discovery of Claraia and Eumorphotis from Triassic Yakuno Group, Kyoto Pref., Japan[J]. Memoirs of the College of Science, University of Kyoto (Series B), 1953, 20:261-269.
[70]  K, Yabe Y. Eumorphotis multiformis shionosawensis, subsp. nov. from the Shionosawa limestone at Shionosawa, North of the Sanchu Graben, Kwanto Mountainland, Japan[J]. Transactions and Proceedings of Palaeontological Society of Japan, 1955, 17:5-12.
[71]  K. Permian and Eo-Triassic Bakevellias from the Maizuru Zone, Southwest Japan[J]. Memoirs of the College of Science, University of Kyoto (Series B), 1959, 26:193-213.
[72]  K. Permian and Eo-Triassic Myophoriidae from the Maizuru Zone, Southwest Japan[J]. Journal of Geology and Geography, 1960, 31:49-62.
[73]  K. Early and middle Triassic Pelecypod-fossils from the Maizuru zone, southwest Japan[J]. Memoirs of the College of Science, University of Kyoto (Series B), 1961, 27:249-291.
[74]  K. The Lower Triassic Kurotaki Fauna in Shikoku and its allied Faunas in Japan[J]. Memoirs of the Faculty of Science, Kyoto University, Series of Geology and Mineralogy, 1971, 38:103-133.
[75]  M. Claraia from North Malaya, with a note on the distribution of Claraia in Southeast Asia[J].Contributions to the Geology and Palaeontology of Southeast Asia, 1968, 59:78-86.
[76]  K, Yin E H. Discovery of Early Triassic bivalves from Kelantan, Malaya[J]. Journal of Geosciences, Osaka City University, 1966, 9:101-108.
[77]  Y, Oji T. Low-diversity shallow marine benthic fauna from the Smithian of northeast Japan: Paleoecologic and paleobiogeographic implications[J]. Paleontological Research, 2004, 8:199-218.
[78]  W, Feng Q, Welden E A, et al. A late Permian to Early Triassic bivalve fauna from the Dongpan section, southern Guangxi, South China[J]. Journal of Paleontology, 2007, 81:1 009-1 019.
[79]  T, Nakazawa K. Bivalves[M]\\Shigeta Y, Zakharov Y D, Maeda H, et al, eds. The Lower Triassic System in the Abrek Bay Area, South Primorye, Russia. Tokyo:National Museum of Nature and Science, 2009:156-173.
[80]  M, Bucher H, Bruhwiler T, et al. An unusually diverse mollusc fauna from the earliest Triassic of South China and its implications for benthic recovery after the end-Permian biotic crisis[J]. Geobios, 2011, 44:71-85.
[81]  M, Hautmann M, Hermann E, et al. Olenekian (Early Triassic) bivalves from the Salt Range and Surghar Range, Pakistan[J]. Palaeontology, 2012, 55:1 043-1 076.
[82]  M, Smith A B, McGowan A J, et al. Bivalves from the Olenekian (Early Triassic) of south-western Utah: Systematics and evolutionary significance[J]. Journal of Systematic Palaeontology, 2013, 11:263-293.
[83]  Loriga C, Masetti D, Neri C. La Formazione di Werfen (Scitico) delle Dolomiti occidental[J]. Rivista Italiana di Paleontologia e Stratigrafia, 1983, 88:501-598.
[84]  Loriga C, Posenato R. Costatoria subrotunda (Bittner, 1901) a Smithian (Lower) Triassic Marker from Tethys[J]. Rivista Italiana di Paleontologia e Stratigrafia, 1986, 92:189-200.
[85]  Hongfu. Bivalves near the Permian—Triassic boundary in South China[J]. Geological Review, 1983, 29(4):303-320.[殷鸿福. 古生代、中生代之交的华南双壳类——分带、对比与危机[J]. 地质论评, 1983, 29(4):303-320.]
[86]  Faming. New materials of bivalves from the Early Triassic in Fujian[J]. Acta Palaeontologica Sinica, 1985, 24(4):395-402.[吴发明. 福建早三叠世双壳类新材料[J]. 古生物学报, 1985, 24(4):395-402.]
[87]  T, Dang T H. Lower Triassic bivalve fossils from the Song Da and an Chau Basins, North Vietnam[J]. Paleontological Research, 2007, 11:135-144.
[88]  K, Runnegar B. The Permian-Triassic boundary: A crisis for bivalves?[M]\\Logan A, Hills L V, eds. The Permian and Triassic Systems and Their Mutual Boundary-Memoir 2. Calgary:Canadian Society of Petroleum Geologists, 1973:608-621.
[89]  H F. Bivalves near the Permian-Triassic boundary in South China[J]. Journal of Paleontology, 1985, 59:572-600.
[90]  Ling. Evolutionary change of bivalves from Changxingian to Griesbachian in South China[J]. Acta Palaeontologica Sinica, 1995, 34(3):350-369.[李玲. 华南长兴期至格里斯巴赫期双壳类的演替[J]. 古生物学报, 1995, 34(3):350-369.]
[91]  C A. Triassic bivalves and the initial marine Mesozoic revolution: A role for predators?[J]. Geology, 2001, 29:359-362.
[92]  Zongjie. Approach to the rxtinction pattern of Permian Bivalvia of South China[M]\\Rong Jiayu, Fang Zongjie, eds. Mass Extinction and Recovery Evidences from the Palaeozoic and Triassic of South China. Hefei:University of Science and Technology of China Press, 2004: 571-646.[方宗杰. 华南二叠纪双壳类动物群灭绝型式的探讨[M]\\戎嘉余, 方宗杰. 生物大灭绝与复苏——来自华南古生代和三叠纪的证据[M]. 合肥:中国科学技术大学出版社, 2004:571-646.]
[93]  R. Patterns of bivalve biodiversity from Early to Middle Triassic in the Southern Alps (Italy): Regional vs. global events[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 261:145-159.
[94]  R. Survival patterns of macrobenthic marine assemblages during the end-Permian mass extinction in the western Tethys (Dolomites, Italy)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280:150-167.
[95]  Z Q, Tong J N, Liao Z T, et al. Structral changes of marine communities over the Permian-Triassic transitions: Ecologically assessing the End-Permian mass extinction and its aftermath[J]. Global and Planetary Change, 2010, 73:123-140.
[96]  R, Hautmann M, Brayard A, et al. Recovery of Benthic marine communities from the end-Permian mass extinction at the low latitudes of eastern Panthalassa[J]. Palaeontology, 2013, 57:547-589.
[97]  R, Hautmann M, Bucher H. A new paleoecological look at the Dinwoody Formation (Lower Triassic, Western USA): Intrinsic versus extrinsic controls on ecosystem recovery after the end-Permian mass extinction[J]. Journal of Paleontology, 2013, 87:854-880.
[98]  R, Hautmann M, Wasmer M, et al. Palaeoecology of the Spathian Virgin Formation (Utah, USA) and its implications for the Early Triassic recovery[J]. Acta Palaeontologica Polonica, 2013, 58:149-173.
[99]  R. Global correlations of mid Early Triassic events: The Induan/Olenekian boundary in the Dolomites (Italy)[J]. Earth-Science Reviews, 2008, 91:93-105.
[100]  R J. The Lilliput effect in the aftermath of the end-Permian extinction event[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 252:132-144.
[101]  I, Twitchett R J, Price-Lloyd N. Changes in size and growth rate of ‘Lilliput’ animals in the earliest Triassic[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308:171-180.
[102]  Y D, Shigeta A M, Popov A N, et al. The candidates of global stratotype of the boundary of the Induan and Olenekian stages of the Lower Triassic in southern Primorye[J]. Albertiana, 2000, 24:12-26.
[103]  Yanxia, Xu Donglai, Tong Jinnan. A preliminary study on the Lower Triassic strata of Sidazhai, Ziyun, Guizhou Province[J]. Journal of Stratigraphy, 2006, 30(2):177-182.[胡艳霞, 徐东来, 童金南. 贵州紫云四大寨早三叠世地层初步研究[J]. 地层学杂志, 2006, 30(2):177-182.]
[104]  Hui, Tong Jinnan, Ren Jiangbo, et al. Early Triassic bivalve biostratigraphy and paleocommunities at Xiakou section in Xingshan, Hubei Province[J]. Earth Science—Journal of China University of Geosciences, 2009, 34(5):733-742.[李慧, 童金南, 任江波, 等. 湖北兴山峡口早三叠世双壳类生物地层及古群落分析[J]. 地球科学——中国地质大学学报, 2009, 34(5):733-742.]
[105]  J, Wu S, Li Z, et al. Lower Triassic bivalves from Chaohu, Anhui Province, China[J]. Albertiana, 2006, 34:42-51.
[106]  Xinqi, Huang Yunfei, Tong Jinnan. Triassic bivalve biostratigraphy sequence in Zunyi, Guizhou Provinc[J]. Geological Science and Technology, 2010, 29(6):7-14.[熊鑫琪, 黄云飞, 童金南. 贵州遵义地区早—中三叠世双壳类生物地层研究[J]. 地质科技情报, 2010, 29(6):7-14.]
[107]  T H. Lower Triassic bivalves from the Hong Ngai Formation (Song Hien structural zone)[J]. Journal of Geology (Series B), 1998, 11/12:95-104.
[108]  T, Dang T H, Chen C C. Lower Triassic bivalve assemblages after the end-Permian mass extinction in South China and North Vietnam[J]. Paleontological Research, 2008, 12:119-128.
[109]  K, Shigeta Y, Dang T H, et al. Crittendenia (Bivalvia) from the Lower Triassic (Olenekian) Bac Thuy Formayion, an Chau Basin, Northern Vietnam[J]. Paleontological Research, 2013, 17:1-11.
[110]  C A. Biochronology of Triassic bivalves[J]. Geological Society, London, Special Publications, 2010, 334:201-219.
[111]  S, He X, Shi G. Biostratigraphy and correlation of several Permian-Triassic boundary sections in southwestern China[J]. Journal of Southeast Asian Earth Sciences, 1995, 12:19-30.
[112]  Yuntao, Yu Jianxin, Feng Qinglai. The discovery of Ophiceras in the Kayitou Formation in eastern Yunnan Province and its significance[J]. Journal of Stratigraphy, 2008, 32(2):153-158.[田云涛, 喻建新, 冯庆来. Ophiceras (蛇菊石)在滇东卡以头组的发现及其意义[J]. 地层学杂志, 2008, 32(2):153-158.]
[113]  Hongfu. Palaeogeographical and stratigraphical distribution of the Lower Triassic Claraia and Eumorphotis (Bivalvia)[J]. Acta Geologica Sinica, 1981, 55(3):161-169.[殷鸿福. 克氏蛤和正海扇的分布及其地质意义[J]. 地质学报, 1981, 55(3):161-169.]
[114]  A, Miller A I. Extinction and survival in the Bivalvia[M]\\Larwood G P, ed. Extinction and Survival in the Fossil Record. Oxford:Clarendon Press, 1988:121-138.
[115]  M E, Payne J L. Acidification, anoxia, and extinction: A multiple logistic regression analysis of extinction selectivity during the Middle and Late Permian[J]. Geology, 2011, 39:1 059-1 062.
[116]  C A, Newton C R. Selective extinction among end-Triassic European bivalves[J]. Geology, 1995, 23:102-104.
[117]  S, Echevarria J. Ecological signature of the end-Triassic biotic crisis: What do bivalves have to say?[J]. Historical Biology, 2012, 24:489-503.
[118]  Jinhua, Stiller F, Komatsu T. A bivalve radiation after the end-Permian mass extinction[J]. Science Technology and Engineering, 2003, 3(5):415-420.[陈金华, Stiller F, 小松俊文. 二叠纪末大灭绝后双壳类新的辐射[J]. 科学技术与工程, 2003, 3(5):415-420.]
[119]  T, Chen J, Cao M, et al. Middle Triassic (Anisian) diversified bivalves: Depositional environments and bivalve assemblages in the Leidapo Member of the Qingyan Formation, southern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 208:207-223.
[120]  M J. Conodont diversity and evolution through the latest Permian and Early Triassic upheavals[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 252:93-117.
[121]  A, Escarguel G, Bucher H, et al. Good genes and good luck: Ammonoid diversity and the end-Permian mass extinction[J]. Science, 2009, 325:1 118-1 121.
[122]  H J, Tong J N, Chen Z Q. Evolutionary dynamics of the Permian-Triassic foraminifer size: Evidence for Lilliput effect in the end-Permian mass extinction and its aftermath[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308:98-110.
[123]  D L, Bottjer D J, Droser M L. Ecological signature of Lower Triassic shell beds of the Western United States[J]. Palaios, 2004, 19:372-380.
[124]  A. Biotic crises in the history of Upper Silurian graptoloid: A palaeobiological model[J]. Historical Biology, 1993, 7:29-50.
[125]  H J, Wignall P B, Chen Z Q, et al. Recovery tempo and pattern of marine ecosystems after the end-Permian mass extinction[J]. Geology, 2011, 39:739-742.
[126]  I. Size changes of bivalves and a hypothesis about the cause of mass extinction[J]. Fossils, 1997, 62:24-36.
[127]  I. Ecology of mass extinctions: The diversity and shell size of bivalves through time[J]. Iden, 1998, 52:38-44.
[128]  M L, Bottjer D J. The non-actualistic Early Triassic gastropod Fauna: A case study of the Lower Triassic Sinbad Limestone Member[J]. Palaios, 2004, 19:259-275.
[129]  J L. Evolution dynamics of Gastropod size across the end-Permian extinction and through the Triassic recovery interval[J]. Paleobiology, 2005, 31:269-290.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133