Chen F, Yuan Y, Wei W. Climatic response of Picea crassifolia tree-ring parameters and precipitation reconstruction in the western Qilian Mountains, China[J]. Journal of Arid Environment, 2011, 75: 1 121-1 128.
[2]
Li Z H, Driese S G, Cheng H. A multiple cave deposit assessment of suitability of speleothem isotopes for reconstructing palaeo-vegetation and palaeo-temperature[J]. Sedimentology, 2014, 61(3): 749-766.
[3]
Rao Z G, Chen F H, Cheng H, et al. High-resolution summer precipitation variations in the western Chinese Loess Plateau during the last glacial[J]. Scientific Reports, 2013, 3(2 785): 1-6.
[4]
Chi Y P, Fang X M, Song C H, et al. Cenozoic organic carbon isotope and pollen records from the Xining Basin, NE Tibetan Plateau, and their palaeoenvironmental significance[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 386: 436-444.
[5]
Gebrekirstos A, Worbes M, Teketay D, et al. Stable carbon isotope ratios in tree rings of co-occurring species from semi-arid tropics in Africa: Patterns and climatic signals[J]. Global and Planetary Change, 2009, 66(3/4): 253-260.
[6]
Yuan Zineng, Xing Lei, Zhang Hailong, et al. Progress of biomarker stable hydrogen isotope and its application to marine paleoenvironmental reconstruction[J]. Advances in Earth Science, 2012, 27(3): 276-283. [袁子能, 邢磊, 张海龙, 等. 生物标志物稳定氢同位素研究进展及在海洋古环境重建中的应用[J]. 地球科学进展, 2012, 27(3): 276-283.]
[7]
Hafida E B, Patterson R T. Influence of cellulose oxygen isotope variability in sub-fossil Sphagnum and plant macrofossil components on the reliability of paleoclimate records at the Mer Bleue Bog, Ottawa, Ontario, Canada[J]. Organic Geochemistry, 2012, 43: 39-49.
[8]
Marika H, Martin W, Michael G, et al. A 400-year reconstruction of July relative air humidity for the Vienna region (eastern Austria) based on carbon and oxygen stable isotope ratios in tree-ring latewood cellulose of oaks (Quercus petraea Matt. Liebl.)[J]. Climatic Change, 2011, 105: 243-262.
[9]
Verleyen E, Hodgson D A, Sabbe K, et al. Post-glacial regional climate variability along the East Antarctic coastal margin—Evidence from shallow marine and coastal terrestrial records[J]. Earth-Science Reviews, 2011, 104(4): 199-212.
[10]
Valery J T,Zewdu E, Albert C,et al. Reconstructing palaeoenvironment from δ 13 C and δ 15 N transects values of soil organic matter: A calibration from arid and wetter elevation transects in Ethiopia[J]. Geoderma, 2008, 147:197-210.
[11]
Li Chaozhu, Zhang Xiao, Xu Yuanbin, et al. Reviews on the reconstructed C 3 /C 4 variations since the late Miocene in the Chinese Loess Plateau[J]. Advances in Earth Science, 2012, 27(3): 284-291. [李朝柱, 张晓, 许元斌, 等. 黄土高原地区晚中新世以来陆地植被C 3 /C 4 植物相对丰度演化研究进展[J]. 地球科学进展, 2012, 27(3): 284-291.]
[12]
Reynard L M, Hedges R E. Stable hydrogen isotopes of bone collagen in palaeodietary and palaeoenvironmental reconstruction[J]. Journal of Archaeological Science, 2008, 35: 1 934-1 942.
[13]
Verheyden S, Nader F H, Cheng H J, et al. Paleoclimate reconstruction in the Levant region from the geochemistry of a Holocene stalagmite from the Jeita cave, Lebanon[J]. Quaternary Research, 2008, 70: 368-381.
[14]
Eiler J M. Paleoclimate reconstruction using carbonate clumped isotope thermometry[J]. Quaternary Science Reviews, 2011, 30(25/26): 3 575-3 588.
[15]
Ann-Kathrin S, Michael Z, Björn B, et al. The late Quaternary loess record of Tokaj, Hungary: Reconstructing palaeoenvironment, vegetation and climate using stable C and N isotopes and biomarkers[J]. Quaternary International, 2011, 240: 52-61.
[16]
van Beynen P E, Soto L, Pace-Graczyk K. Paleoclimate reconstruction derived from speleothem strontium and δ 13 C in Central Florida[J]. Quaternary International, 2008, 187 (1): 76-83.
[17]
Zhao Deai, Wu Haibin, Wu Jianyu, et al. C 3 /C 4 plants characteristics of the eastern and western parts of the Chinese Loess Plateau during Mid-Holocene and last interglacial[J]. Quaternary Sciences, 2013, 33(5): 848-855. [赵得爱,吴海斌,吴建育,等. 过去典型增温期黄土高原东西部C 3 /C 4 植物组成变化特征[J]. 第四纪研究, 2013, 33(5): 848-855.]
[18]
Kohn M J. Carbon isotope compositions of terrestrial C 3 plants as indicators of (paleo) ecology and (paleo) climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(46): 19 691-19 695.
[19]
Wang G A, Li J Z, Liu X Z, et al. Variations in carbon isotope ratios of plants across a temperature gradient along the 400 mm isoline of mean annual precipitation in north China and their relevance to paleovegetation reconstruction[J]. Quaternary Science Reviews, 2013, 63: 83-90.
[20]
Gao J Q, Lei G C, Zhang X W, et al. Can δ 13 C abundance, water-soluble carbon, and light fraction carbon be potential indicators of soil organic carbon dynamics in Zoigê wetland[J]. Catena, 2014, 119: 21-27.
[21]
Liu X H, Zhao L J, Gasaw M, et al. Foliar δ 13 C and δ 15 N values of C 3 plants in the Ethiopia Rift Valley and their environmental controls[J]. Chinese Science Bulletin, 2007, 52(9): 1 265-1 273.
[22]
Liu X Z, Su Q, Li C K, et al. Responses of carbon isotope ratios of C 3 herbs to humidity index in northern China[J]. Turkish Journal of Earth Sciences, 2014, 23: 100-111.
[23]
Wang G A, Han J M, Zhou L P, et al. Carbon isotope ratios of C 4 plants in loess areas of North China[J]. Science in China (Series D), 2006, 49(1): 97-102.
[24]
Deines P. The isotopic composition of reduced organic carbon[M]∥ Fritz P, Fontes J C, eds. Handboook of Environmental Isotope Geochemistry I, The Terrestrial Environment. Amsterdam: Elsevier, 1980:329-406.
Farquhar G D, O’Leary M H, Berry J A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves[J]. Australian Journal of Plant Physiology, 1982, 9: 121-137.
[27]
Farquhar G D. On the nature of carbon isotope discrimination in C 4 species[J]. Australian Journal of Plant Physiology, 1983, 10: 205-226.
[28]
Farquhar G D, Ehleringer J R, Hubick K T. Carbon isotope discrimination and photosynthesis[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1989, 40: 503-537.
[29]
Evans J R, Sharkey E T, Berry J A, et al. Carbon isotope discrimination measured concurrently with gas exchange to investigate CO 2 diffusion in leaves of higher plants[J]. Australian Journal of Plant Physiology, 1986, 13: 281-292.
[30]
Condon A G, Richards R A, Rebetzke G J, et al. Improving intrinsic water-use efficiency and crop yield[J]. Crop Science, 2002, 42: 122-131.
[31]
Dawson T E, Mambelle S, Plamboeck A H, et al. Stable isotopes in plant ecology[J]. Annual Review of Ecology and Systematics, 2002,33: 507-559.
[32]
Harmon C. The geochemistry of the stable carbon isotopes[J]. Geochimica et Cosmochimica Acta,1953, 3: 53-92.
[33]
Farmer J G. Problems in interpreting tree-ring δ 13 C records[J]. Nature, 1979, 279: 229-231.
[34]
Pearman G I, Francey R J, Fraser P B. Climatic implications of stable carbon isotopes in tree rings[J]. Nature, 1976, 260: 771-772.
[35]
Stuiver M, Braziunas T F. Tree cellulose 13 C/ 12 C isotope ratios and climatic change[J]. Nature, 1987, 328: 58-60.
[36]
Wang G A, Han J M, Liu T S. The carbon isotopic composition of C 3 herbaceous plants in loess area of North China[J]. Science in China (Series D), 2003, 46(10): 1 069-1 076.
[37]
Liu Xianzhao, Wang Guoan, Li Jiazhu, et al. Relationship between temperature and δ 13 C values of C 3 herbaceous plants and its implications of WUE in farming-pastoral zone in north China[J]. Acta Ecologica Sinica, 2011, 31(1): 123-136. [刘贤赵, 王国安, 李嘉竹, 等. 中国北方农牧交错带C3草本植物 δ 13 C与温度的关系及其对WUE的指示[J]. 生态学报, 2011, 31(1): 123-136.]
[38]
Schleser G H, Helle G, Luche A, et al. Isotope signals as climate proxies: The role of transfer functions in the study of terrestrial archives[J]. Quaternary Science Reviews, 1999, 18: 927-943.
[39]
McCarroll D, Loader N J. Stable isotopes in tree rings[J]. Quaternary Science Reviews, 2004, 23: 771-801.
[40]
Heaton T H E. Spatial, species and temporal variations in the 13 C/ 12 C ratios of C 3 plants: Implications for palaeo-diet studies[J]. Journal of Achaeological Science, 1999, 26: 637-649.
[41]
Smith B N, Herath H M W, Chase J B. Effect of growth temperature on carbon isotopic ratios in barley, pea and rape[J]. Plant Cell Physiology, 1973, 14: 177-182.
[42]
Leavitt S W, Long A. An atmospheric 13 C/ 12 C reconstruction generated through removal of climate effects from tree-ring 13 C/ 12 C measurements[J]. Tellus, 1983, 35B(2): 92-102.
[43]
Liu Xianzhao, Su Qing, Li Jiazhu, et al. Responses of carbon isotopic composition of C 3 and C 4 herbaceous plants to temperature under controlled temperature conditions[J]. Acta Ecologica Sinica, 2015, 35(10): 1-13, doi:10.5846/stxb201307051840"> doi:10.5846/stxb201307051840. [刘贤赵, 宿庆, 李嘉竹, 等. 控温条件下C 3 、C 4 草本植物碳同位素组成对温度的响应[J]. 生态学报, 2015, 35(10): 1-13,doi:10.5846/stxb201307051840"> doi:10.5846/stxb201307051840.]
[44]
Troughton J H, Card K A. Temperature effects on the carbon-isotope ratio of C 3 , C 4 and Crassulacean-Arid-Metabolish (CAM) plants[J]. Planta, 1975, 123:185-190.
[45]
Diefendorf A F, Mueller K E, Wing S L. Global patterns in leaf 13 C discrimination and implications for studies of past and future climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107: 5 738-5 743.
[46]
Francey R J, Farquhar G D. An explanation of 13 C/ 12 C variations in tree rings[J]. Nature, 1982, 297: 28-31.
[47]
Morecroft M D, Woodward F I. Experiments on the causes of altitudinal differences in the leaf nutrient contents, size and 13 C of Alchemilla Alpine[J]. New Phytologist, 1996, 134: 471-479.
[48]
Devitt D A, Smith S D, Neuman D S. Leaf carbon isotope ratios in three landscape species growing in an arid environment[J]. Journal of Arid Environments, 1997, 2: 249-257.
[49]
Schleser G H.Investigations of the δ 13 C pattern in leaves of Fagus sylvatica L[J]. Journal of Experimental Botany, 1990, 41: 565-572.
[50]
Wang G A, Han J M, Zhou L P, et al. Carbon isotope ratios of plants and occurrences of C 4 species under different soil moisture regimes in arid region of Northwest China[J]. Physiologia Plantarum, 2005, 25: 74-81.
[51]
Liu W G, Feng X H, Ning Y F, et al. δ 13 C variation of C 3 and C 4 plants across an Asian monsoon rainfall gradient in arid northwestern China[J]. Global Change Biology, 2005, 11: 1 094-1 100.
[52]
Su Bo, Han Xingguo, Li Linghao, et al. Response of δ 13 C value and water use efficiency of plant species to environmental gradients along the grassland zone of Northeast China transect[J]. Acta Phytoecological Sinica, 2000, 24(6): 648-655. [苏波, 韩兴国, 李凌浩, 等.中国东北样带草原区植物 δ 13 C值及水分利用效率对环境梯度的响应[J]. 植物生态学报, 2000, 24(6): 648-655.]
[53]
Wang G, Feng X, Han J, et al. Paleovegetation reconstruction using δ 13 C of soil organic matter[J]. Biogeosciences, 2008, 5: 1 325-1 337.
[54]
Stewart G R, Turnbull M H, Schmidt S, et al. 13 C natural abundance in plant communities along a rainfall gradient: A biological integrator of water availability[J]. Australian Journal of Plant Physiology, 1995, 22: 51-55.
[55]
Zhang C J, Chen F H, Jin M. Study on modern plant δ 13 C in Western China and significance[J]. Chinese Journal of Geochemistry, 2003, 22(2): 97-106.
[56]
Liu Xianzhao, Li Chaokui, Xu Shujian, et al. Carbon isotope composition of C 3 herbaceous plants and its relation to humidity index in arid and humid climate zones in Northern China[J].Chinese Bulletin of Botany, 2011, 46 (6): 675-687. [刘贤赵, 李朝奎, 徐树建, 等. 中国北方干湿气候区C 3 草本植物 δ 13 C值及其与湿润指数的关系[J]. 植物学报, 2011, 46 (6): 675-687.]
[57]
Sun B N, Dilcher D L, Beerling D J, et al. Variation in Ginkgo Biloba L. leaf characters across a climatic gradient in China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(12): 7 141-7 146.
[58]
Schulze E D, Williams R J, Farquhar G D, et al. Carbon and nitrogen isotope discrimination and nitrogen nutrition of trees along a rainfall gradient in northern Australia[J]. Australian Journal of Plant Physiology, 1998, 25: 413-425.
[59]
Tieszen L L, Boutton T W. Stable Carbon Isotope in Terrestrial Ecological Research[C]. Berlin: Springer-Verlag, 1989:167- 195.
[60]
Feng X, Epstein S. Carbon isotopes of trees from arid environments and implications for reconstructing atmospheric CO 2 concentration[J]. Geochimica et Cosmochimica Acta, 1995, 59: 2 599-2 608.
[61]
Wang G A, Feng X H. Response of plants’ water use efficiency to increasing atmospheric CO 2 concentration[J]. Environmental Science & Technology, 2012, 46:8 610-8 620.
[62]
[62]Anderson W T, Bernasconi S M, McKenzie J A. Oxygen and carbon isotopic record of climatic variability in tree ring cellulose: An example from central Switzerland[J]. Journal of Geophysical Research-Earth, 1998, 103: 31 625-31 636.
[63]
Robertson I, Rolfe J, Switsur V R, et al. Signal strength and climate relationship in 13 C/ 12 C ratios of tree ring cellulose from oak in southwest Finland[J]. Geophysical Research Letters, 1997, 24: 1 487-1 490.
[64]
[64]Morison J, Gifford R.Stomatal sensitivity to carbon dioxide and humidity: A comparison of two C 3 and two C 4 grass species[J].Plant Physiology, 1983, 71: 789-796.
[65]
Gong W, Gong Y B, Hu T X, et al.Responses of transpiration characteristics and water use efficiency of Pinus elliottii leaf to elevated CO 2 concentration[J]. Journal of Soil and Water Conservation, 2005, 19(5) : 178-182.
[66]
Polley H W, Johnson H B, Marino B D, et al. Increase in C 3 plant water-use efficiency and biomass over glacial to present CO 2 concentrations[J]. Nature, 1993, 361: 61-63.
[67]
Beerling D J. Ecophysiological responses of woody plants to past CO 2 concentrations[J]. Tree Physiology, 1996, 16: 389-396.
[68]
Bert G D, Leavit S W, Dupouey J L. Variations of wood δ 13 C and water-use efficiency of Abies alba (Mill.) during the last century[J]. Ecology, 1997, 78: 1 588-1 596.
[69]
Raffalli-Delerce G, Masson-Delmotte V, Dupouey J L, et al. Reconstruction of summer droughts using tree-ring cellulose isotopes: A calibration study with living oaks from Brittany (western France)[J]. Tellus B, 2004, 56: 160-174.
[70]
Zheng S X, Shangguan Z P. Studies on variety in the δ 13 C value of typical Plants in Loess Plateau over the last 70 years[J]. Acta Phytoecological Sinica, 2005, 29(2): 289-295.
[71]
Krner C, Farquhar G D, Roksandie Z. A global survey of carbon isotope discrimination in plants from high altitude[J]. Oecologia, 1988, 74(4): 623-632.
[72]
Krner C, Farquhar G D,Wong S C. Carbon isotope discrimination by plants follows latitudinal and altitudinal trends[J]. Oecologia, 1991, 88(1): 30-40.
[73]
Hultine K R, Marshall J D. Altitude trends in conifer leaf morphology and stable carbon isotope composition[J]. Oecologia, 2000, 123(1): 32-40.
[74]
Zhou Y C, Fan J W, Zhong H P, et al. Relationships between altitudinal gradient and plant carbon isotope composition of grassland communities on the Qinghai-Tibet Plateau, China[J]. Science in China (Series D), 2013, 56: 311-320.
[75]
Wang X F, Li R Y, Li X Z, et al. Variations in leaf characteristics of three species of angiosperms with changing of altitude in Qilian Mountains and their inland high-altitude pattern[J]. Science in China (Series D), 2014, 57: 662-670.
[76]
Sparks J P, Ehleringer J R. Leaf carbon isotope discrimination and nitrogen content for riparian trees along elevation transects[J]. Oecologia, 1997, 109(3): 362-367.
[77]
Li J Z, Wang G A, Liu X Z, et al. Variations in carbon isotope ratios of C 3 plants and distribution of C 4 plants along an altitudinal transect on the eastern slope of Mount Gongga[J]. Science in China (Series D), 2009, 52(11): 1 714-1 723.
[78]
Van de Water P K, Leavitt S W, Betancourt J L. Leaf δ 13 C variability with elevation, slope aspect and precipitation in the southwest United States[J]. Oecologia, 2002, 132(3): 332-343.
[79]
Zhu Y, Siegwolf R T W, Durka W, et al. Phylogenetically balanced evidence for structural and carbon isotope responses in plants along elevational gradients[J]. Oecologia,2010, 162(4): 853-863.
[80]
Wang G A, Zhou L P, Liu M, et al. Altitudinal trends of leaf δ 13 C follow different patterns across a mountainous terrain in North China characterized by a temperate semi-humid climate[J]. Rapid Communication in Mass Spectrometry, 2010, 24: 1 557-1 564.
[81]
Wu Guoxiong,Lin Hai,Zou Xiaolei,et al.Research on global climate change and scientific data[J]. Advances in Earth Science,2014,29(1): 15-22. [吴国雄,林海,邹晓蕾,等.全球气候变化研究与科学数据[J].地球科学进展, 2014, 29(1): 15-22.]