全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

EnKF同化的背景误差协方差矩阵局地化对比研究

DOI: 10.11867/j.issn.1001-8166.2014.10.1175, PP. 1175-1185

Keywords: EnKF,协方差局地化,局地分析,伪相关

Full-Text   Cite this paper   Add to My Lib

Abstract:

在集合数据同化中,背景场误差的协方差估计特别重要。通常有限个成员的集合在估计背景误差协方差矩阵时会引入伪相关,从而造成协方差被低估、滤波发散。虽然协方差膨胀的经验性方法能一定程度缓解协方差被低估的问题,但不能消除协方差的伪相关问题。因此,结合EnKF方案探讨2种消除伪相关的局地化方法(协方差局地化方法和局地分析方法),分析这2种局地化方法对背景误差协方差矩阵、增益矩阵、集合转换矩阵以及同化结果的影响。实验结果表明局地化方法不仅能消除背景误差协方差矩阵的伪相关,还可以增加背景误差协方差矩阵的秩;在“弱”同化强度下,2种局地化方法的增益矩阵和集合转换矩阵相等;随着同化强度的增大,增益矩阵和集合转换矩阵的差异会变大;在不同的同化强度下,2种局地化方法各具特色,相对而言,协方差局地化方法在更新集合均值和集合扰动上具有较强的鲁棒性。研究结论有助于背景场误差协方差的精细分析和估计。

References

[1]  Jianwen, Qin Sixian. The research status review of data assimilation algorithm[J]. Advances in Earth Science, 2012, 27(7): 747-757.[马建文,秦思娴.数据同化算法研究现状综述[J].地球科学进展,2012, 27(7): 747-757.]
[2]  G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics[J]. Journal of Geophysical Research: Oceans (1978-2012), 1994, 99(C5): 10 143-10 162.
[3]  Chunhui, Zhang Lifeng, Guan Jiping, et al. Development and application of ensemble-variational data assimilation methods [J]. Advances in Earth Science, 2013,28(6):648-656.[熊春晖, 张立凤, 关吉平, 等. 集合—变分数据同化方法的发展与应用[J]. 地球科学进展, 2013, 28(6): 648-656.]
[4]  R. Localization in the Ensemble Kalman Filter[D]. London: University of Reading, 2008.
[5]  Yanhua, Zhang Shuwen, Mao Lu, et al. An evaluation of simulated and estimated land surface states with two different models[J]. Advances in Earth Science, 2013,28(8):913-922.[刘彦华, 张述文, 毛璐, 等. 评估两类模式对陆面状态的模拟和估算[J]. 地球科学进展, 2013, 28(8): 913-922.]
[6]  T M, Whitaker J S, Snyder C. Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter[J]. Monthly Weather Review, 2001, 129(11): 2 776-2 790.
[7]  J L, Anderson S L. A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts[J]. Monthly Weather Review, 1999, 127(12): 2 741-2 758.
[8]  J L. An ensemble adjustment Kalman filter for data assimilation[J]. Monthly Weather Review, 2001, 129(12): 2 884-2 903.
[9]  P, Bertino L. Relation between two common localisation methods for the EnKF[J]. Computational Geosciences, 2011, 15(2): 225-237.
[10]  P R, Sakov P, Corney S P. Impacts of localisation in the EnKF and EnOI: Experiments with a small model[J]. Ocean Dynamics, 2007, 57(1): 32-45.
[11]  G. Data Assimilation: The Ensemble Kalman Filter (2nd)[M].Dordrecht: Springer, 2009.
[12]  I. Bemerkungen zur theorie der beschrnkten bilinearformen mit unendlich vielen vernderlichen[J]. Journal für die Reine und Angewante Mathematiek, 1911,140: 1-28.
[13]  G, Van Leeuwen P J, Evensen G. Analysis scheme in the ensemble Kalman filter[J]. Monthly Weather Review, 1998, 126(6):1 719-1 724.
[14]  J S, Hamill T M. Ensemble data assimilation without perturbed observations[J]. Monthly Weather Review, 2002, 130(7):1 913-1 924.
[15]  P, Oke P R. A deterministic formulation of the ensemble Kalman filter: An alternative to ensemble square root filters[J]. Tellus A, 2008, 60(2): 361-371.
[16]  C H, Etherton B J, Majumdar S J. Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects[J]. Monthly Weather Review, 2001, 129(3): 420-436.
[17]  R A, Johnson C R. Matrix Analysis[M]. New York: Cambridge University Press, 1985.
[18]  G. Sampling strategies and square root analysis schemes for the EnKF[J]. Ocean Dynamics, 2004, 54(6): 539-560.
[19]  G, Cohn S E. Construction of correlation functions in two and three dimensions[J]. Quarterly Journal of the Royal Meteorological Society, 1999, 125(554): 723-757.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133