H S, Zender C S. Miner dust and global tropospheric chemistry: Relative roles of photolysis and heterogeneous uptake[J]. Journal of Geophysical Research, 2003, 108(D21):4 672, doi:10.1029/2002JD003143.
[2]
K W, Shindell D T, Worden H M, et al. Evaluation of ACCMIP outgoing longwave radiation from tropospheric ozone using TES satellite observations[J]. Atmospheric Chemistry and Physics, 2013, 13: 4057-4072.
[3]
D S, Young P J, Naik V, et al. Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)[J]. Atmospheric Chemistry and Physics, 2013, 13:3 063-3085.
[4]
Mingxing. CH 4 Emission from Rice Paddy Soils in China[M]. Beijing: Science Press, 2001.
[5]
Ying, Xiong Xiaozhen, Tao Jinhua, et al. Methane retrieval from atmospheric infrared sounder using EOF-based regression algorithm and its validation[J]. Chinese Science Bulletin,2014,59(14):1508-1518.
[6]
A, Miller C C, Palmer P I, et al. The Australian methane budget: Interpreting surface and train-borne measurements using a chemistry transport model[J]. Journal of Geophysical Research, 2011, 116: D20306, doi:10.1029/2011JD015964.
[7]
Dingyuan, Liao Hong, Wang Yuesi. Simulated spatial distribution and seasonal variation of atmospheric methane over China: Contributions from key sources[J]. Advances in Atmospheric Sciences, 2014, 31: 283-292.
[8]
Shi, Agnew J. Catalytic combustion of coal mine ventilation air methane[J]. Fuel, 2006, 85(9): 1 201-1 210.
[9]
G J M, Fahey D W, Daniel J S, et al. The large contribution of projected HFC emissions to future climate forcing[J]. Proceeding of National Academy of Sciences of the United States of America, 2009, 106(27):10949-10954, doi:10.1073/pnas.0902817106.
[10]
M A K, Rasmussen R A. Cause of increasing atmospheric methane: Depletion of hydroxyl radicals and the rice of emission[J]. Atomospheric Environment, 1985, 19:397.
[11]
Chaolin, Song Changqing. Research results on study on the column density and vertical variations of atmospheric methane over China[J]. Advances in Earth Science, 2013, 28(11): 1 285-1 286.[张朝林, 宋长青.中国地区整层大气甲烷柱总量及其垂直分布特征研究[J].地球科学进展, 2013, 28(11): 1 285-1 286.]
[12]
Ruoyu, He Jinhai, Zhang Hua. Overview of researches on global warming potential of greenhouse gases[J]. Journal of Anhui Agricultural Science, 2011, 39(28):17416-17422.[张若玉, 何金海, 张华. 温室气体全球增温潜能的研究进展[J]. 安徽农业科学, 2011, 39(28):17 416-17422.]
[13]
P, Ramaswamy V, Artaxo P, et al. Changes in atmospheric constituents and in radiative forcing[M]∥Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC. United Kingdom and New York, USA:Cambridge University Press, 2007.
[14]
S A. HFCs in the atmosphere: Concentrations, emissions and impacts[C]//ASHRAE-NIST Refrigerants Conference, Gaithersburg, Maryland, 2012.
[15]
Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the IPCC[M]. United Kingdom and New York, USA:Cambridge University Press, 2013.
[16]
Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC[M]. United Kingdom and New York, USA:Cambridge University Press, 2007.
[17]
Climate Change 2001: The Physical Science Basis. Contribution of Working Group I to the Third Assessment Report of the IPCC[M]. United Kingdom and New York, USA:Cambridge University Press, 2001.
[18]
HFCs: A Critical Link in Protecting Climate and the Ozone Layer[M]. Kenya, Nairobi:United Nations Environment Programme(UNEP), 2011.
[19]
Nations Environment Programme & World Meteorological Organization). Integrated Assessment of Black Carbon and Tropospheric Ozone: Summery for Decision Makers[M].London: UNON/Publishing Section/Nairobi, 2011.
[20]
Xiangwan. Two basic issues on tackling climate change:The scientificity of strategy addressing climate change and its significance for China’s development[J]. Advances in Earth Science, 2014,29(4):438-442.[杜祥琬. 应对气候变化的两个基本问题——应对气候变化战略的科学性及对中国发展的意义[J]. 地球科学进展,2014,29(4):438-442.]
[21]
States Environmental Protection Agency). Department of the Interior, Environment, and Related Agencies Appropriations Act. Report to Congress on Black Carbon(External peer Review Draft, 2010,EPA-450/D-11-001)[M].Washington DC, USA:EPA,Publication No. EPA-450/R-12-001. 2012.http:∥cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryID=240148.
[22]
D S, Dentener F J, Schultz M G, et al. Multimodel ensemble simulations of present-day and near-future tropospheric ozone[J]. Journal of Geophysical Research, 2006, 111: D08301, doi:10.1029/2005JD006338.
[23]
M. Image Gallery: SCIAMACHY Methane[EB/OL]. (2013-09-26)[2014-08-09]. http:∥www.iup.uni-bremen.de/sciamachy/NIR- NADIR_WFM_DOAS/wfmd_image_gallery_ch4.html.
[24]
Aixue, Xu Yangyang, Claudia T, et al. Mitigation of short-lived climate pollutants slows sea-level rise[J]. Nature Climate Change, 2013, 3:730-734.
V, Xu Y. The copenhagen accord for limiting global warming: Criteria, constraints, and available avenues[J]. Proceeding of National Academy of Sciences of the United States of America, 2010, 107:8 055-8 056.
[27]
D, Kuylenstierna J C, Vignati E, et al. Simultaneously mitigating near-term climate change and improving human health and food security[J]. Science, 2012, 335:183.
[28]
Li, Wang Yaqiang, Chen Zhenlin, et al. Progress of black carbon aerosol research I: Emission, removal and concentration[J]. Advances in Earth Science, 2006, 21(4):352-360.[许黎, 王亚强, 陈振林,等. 黑碳气溶胶研究进展I:排放、清除和浓度[J]. 地球科学进展, 2006, 21(4):352-360.]
[29]
J S, Saxena V K, Wenny B N. Temporal trends of black carbon concentrations and regional climate forcing in the southeastern United States[J]. Atmospheric Environment, 2001, 35(19):3 293-3 302.
[30]
T C, Doherty S J, Fahey D W, et al. Bounding the role of black carbon in the climate system: A scientific assessment[J]. Journal of Geophysical Research, 2013, 118(11):5 380-5 552.
[31]
T, Ramanathan V, Hansen J E, et al. Large historical changes of fossil-fuel black carbon aerosols[J]. Geophysical Research Letters, 2002, 30(6):1 324, doi:10.1029/2002GL016345.
[32]
M Z. Short-term effects of controlling fossil-fuel soot, biofuel soot and gases, and methane on climate, Arctic ice, and air pollution health[J]. Journal of Geophysical Research, 2010, 115:D14209, doi:10.1029/2009JD013795.
[33]
V, Carmichael G. Global and regional climate changes due to black carbon[J]. Nature, 2008, 1: 221-227.
[34]
A, Schonlinner M. Multi-angle absorption photometry—A new method for the measurement of aerosol light absorption and atmospheric black carbon[J]. Journal of Aerosol Science, 2004, 35(4): 421-441.
[35]
R, Sherwood S. The impact of natural versus anthropogenic aerosols on atmospheric circulation in the community atmosphere model[J]. Climate Dynamics, 2011, 36:1 959-1 978.
[36]
J, Sato M, Ruedy R, et al. Efficacy of climate forcings[J]. Journal of Geophysical Research-Atmospheres, 2005, D18(110): D18104, doi:10.1029/2005JD005776.
[37]
M, Salawitch R J, vonder Gathen P, et al. Arctilc ozone loss and climate change[J]. Geophysical Research Letters, 2004, 31(4): L04116, doi:10.1029/2003GL018844.
[38]
D, Faluvegi G, Lacis A, et al. Role of tropospheric ozone increases in 20th-century climate change[J]. Journal of Geophysical Research, 2006, 111: D08302, doi:10.1029/2005JD006348.
[39]
R. A review of surface ozone background levels and trends[J]. Atmospheric Environment, 2004, 38: 3 431-3 442.
[40]
O. Modelling the global tropospheric ozone budget: Exploring the variability in current models[J]. Atmospheric Chemistry Physics, 2007, 7:2 643-2 660.
[41]
Guangyu. Radiative forcing and greenhouse climate effect of atmospheric trace gases[J]. Science in China(Series B), 1991, 7: 776-784.[石广玉. 大气微量气体的辐射强迫与温室气候效应[J]. 中国科学:B辑,1991, 7: 776-784.]
[42]
J E, Sato M. Trends of measured climate forcing agents[J]. Proceeding of National Academy of Science,2001, 98:14 778-14 783.
[43]
V. Climatic effects of ozone change: A review[J]. Low Latitude Aeronomical Processes, 1980, 8: 223-236.
[44]
W C, Pinto J P, Yung Y L. Climatic effects due to halogenated components in the Earth’s atmosphere[J]. Journal of Atmospheric Science, 1980, 37:333-338.
[45]
V, Dickinson R E. The role of stratospheric ozone in the zonal and seasonal radiative energy balance of the earth-troposphere system[J]. Journal of Atmospheric Science, 1979, 36:1 084-1 104.
[46]
J, Ramanathan V, Cryezen P J, et al. Tropospheric ozone and climate[J]. Nature, 1979, 282:818-820.
[47]
S, Cox P M, Collins W J, et al. Huntingford: Indirect radiative forcing of climate change through ozone effects on the land-carbon sink[J]. Nature, 2007, 448:791-794.
[48]
de R. Sylvain Caillol.Fighting global warming: The potential of photocatalysis against CO 2 , CH 4 , N 2 O, CFCs, tropospheric O 3 , BC and other major contributors to climate change[J]. Journal of Photochemistry and Photobiology C, 2011, 12: 1-19.
[49]
M, Gregson K, Marshall S. Global methane emissions and its sensitivity to climate change[J]. Atmospheric Environment, 1998, 32: 3 293-3 299.
[50]
M E L, Massoud M. Methane emissions from wastewater management[J]. Environmental Pollution, 2001,(114): 177-185.
[51]
Baiqing, Yao Tandong, Liu Xianqin, et al. Atmospheric methane recorded in ice cores[J]. Journal of Glaciology and Geocryology, 2006, 27(3): 360-367.[徐柏青, 姚檀栋, 刘先勤,等. 大气甲烷的冰芯记录[J]. 冰川冻土, 2006, 27(3): 360-367.]
[52]
R, Chappellaz J, Stocker T F, et al. Atmospheric methane and nitrous oxide of the late Pleistocene from Antarctic ice cores[J]. Science, 2005, 310: 1 317-1321.
[53]
M Z. Short-term effects of controlling fossil-fuel soot, biofuel soot and gases, and methane on climate, Arctic ice, and air pollution health[J]. Journal of Geophysical Research, 2010, 115:D14209, doi:10.1029/2009JD013795.
[54]
J, Barnola J M, Raynaud D, et al. Ice-core record of atmospheric methane over past 160000 years[J]. Nature, 1990, 345: 127-131.
[55]
D J, Hayhoe K. Atmospheric methane and global change[J]. Earth-Science Review, 2002, 57:177-210.
[56]
O, Friedlingstein P, Collins B, et al. The indirect global warming potential and global temperature change potential due to methane oxidation[J]. Environta Research Letters, 2009, 4(4), doi:10.1088/1748-9326/4/4/044007.
[57]
W J, Sitch S, Boucher O. How vegetation impacts affect climatemetrics for ozone precursors[J]. Journal of Geophysical Research, 2010, 115:D23308, doi:10.1029/2010JD014187.
[58]
Protection Agency Office of Policy, Planning and Evaluation. Inventory of U.S. Greenhouse Gas Emissions and Sinks, 1990-2010[M]. Washington DC: US. Environmental Protection Agency, 2012.
[59]
D W, Hegglin M I. Twenty questions and answers about the ozone layer 2010 update: Scientific assessment of ozone depletion 2010[R]∥World Meteorological Orgnisation Global Ozone Research and Monitoring Project-Report. Switzerland:
[60]
World Meterological Organization, Geneva, 2011.
[61]
G J M, Ravishankara A R, Miller M K, et al. Preserving montreal protocol climate benefits by limiting HFCs[J]. Science, 2012, 335:922-923.
[62]
G J M, Fahey D W, Daniel J S, et al. The large contribution of projected HFC emissions to future climate forcing[J]. Proceeding of National Academy of Sciences, 2009, 106(27):10 949-10 954.
[63]
T J, Schneider W F, Worsnop D R, et al. The environmental impact of CFC replacements—HFCs and HCFCs[J]. Environmental Science & Technology, 1994, 28 (7): 320A-326A.
[64]
Tsai. An overview of environmental hazards and exposure risk of Hydrofluorocarbons (HFCs)[J]. Chemosphere, 2005, 61:1 539-1 547.
[65]
D, Bauer S E, Del Genio A, et al. Coupled aerosol-chemistry-climate twentieth-century transient model investigation: Trends in short-lived species and climate responses[J]. Journal of Climate, 2011, 24(11): 2 693-2 714.
[66]
T, Fuglestvedt J, Myhre G, et al. Abatement of greenhouse gases: Does location matter?[J]. Climate Change, 2006, 74:377-411.
[67]
S H, Seinfeld J H. Climate response of direct radiative forcing of anthropogenic black carbon[J]. Journal of Geophysical Research, 2005, 110: D11102, doi:10. 1029/2004 JD005441.
[68]
Y, Liou K N, Xue Y, et al. Climatic effects of different aerosol types in China simulated by the UCLA general circulation model[J]. Journal of Geophysical Research, 2006, 111: D15201, doi:10.1029/2005JD006312.
[69]
C. A modeling study on the climate impacts of black carbon aerosols[J]. Journal of Geophysical Research, 2004, 109: D03106, doi:10.1029/2003JD004084.
[70]
J, Nazarenko L. Soot climate forcing via snow and ice albedos[J]. Proceeding of National Academy Science of the United States of America, 2004, 101 (2): 423-428.
[71]
M Z. Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming[J]. Journal of Geophysical Research, 2002, 107(D19): 4 410, doi:10.1029/2001JD001376.
[72]
S, Hansen J, Nazarenko L, et al. Climate effects of black carbon aerosols in China and India[J]. Science, 2002, 297: 2 250-2 253.
[73]
Yihui. Climate change and its impact on China’s precipitation[J]. Climate Change Communication, 2003, 2 (2): 9-10.[丁一汇. 气候变化及其对中国降水的影响[J]. 气候变化通讯, 2003, 2 (2): 9-10.]
[74]
Q. Abrupt change of themid-summer climate in central east China by the influence of atmospheric pollution[J]. Atmospheric Environment, 2001, 35: 5 029-5 040.
[75]
C, Ramanathan V. Relationship between trends in land precipitation and tropical SST gradient[J]. Geophysical Research Letters, 2007, 34, doi:10.1029/2007GL030491.
[76]
K M, Kim M K, Kim K M. Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the Tibetan Plateau[J]. Climate Dynamics, 2006, 26:855-864.
[77]
Zhiwen, Zhang Hua, Guo Pinwen. Effects of black carbon aerosol in South Asia on Asian summer monsoon[J].Plateau Meteorology,2009,28(2):419-424.[王志文, 张华, 郭品文. 南亚地区黑碳气溶胶对亚洲夏季风的影响[J]. 高原气象, 2009, 28(2):419-424.]
[78]
Y H. Evaluation of preindustrial to present-day black carbon and its albedo forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)[J]. Atmospheric Chemistry and Physics, 2013, 13:2 607-2 634.
[79]
Changming, Dang Suzhen, Wang Zhonggen, et al. Research progess of black carbon in snow and ice[J]. South-to-North Water Diversion and Water Science & Technology, 2012, 10(2):44-51.[刘昌明, 党素珍, 王中根,等. 雪冰中黑碳的研究进展[J]. 南水北调与水利科技, 2012, 10(2):44-51.]
[80]
Jing, Xiao Cunde, Qin Dahe, et al. Climate forcing of black carbon in snow and ice[J]. Advances in Climate Change Research, 2006, 2(5):238-241.[明镜, 效存德,秦大河,等. 雪冰黑碳的气候效应研究[J]. 气候变化研究进展, 2006, 2(5):238-241.]
[81]
H. Normal atmosphere: Large radical and formaldehyde concentrations predicted[J]. Science, 1971, 173:141-143.
[82]
C E. Global ozone budget and exchange between stratosphere and troposphere[J]. Tellus, 1962, 14:364-337.
[83]
P J. Photochemical reactions initiated by and influencing ozone in unpolluted tropospheric air[J]. Tellus, 1974, 26:47-57.
[84]
D A, Augustsson T R, Levine J S. The photochemistry of anthropogenic non-methane hydrocarbons in the troposphere[J]. Journal of Geophysical Research, 1983, 88:6 683-6 695.
[85]
Chao, Zhou Xiuji. A regional model study of the variations and distributions of ozone and its precursors on eastern Asia and west Pacific Ocean regions[J]. Acta Meteorological Science, 1994, 8(2):195-202.
[86]
V, Cicerone R J, Singh H B. Trace gas trends and their potential role in climate change[J]. Journal of Geophysical Research, 1985, 90(D3): 5 547-5 566.
[87]
Z, Dabdub D, Seinfeld J H. Chemical coupling between atmospheric ozone and particulate matter[J]. Science, 1997, 227:116-119.