[1] | 〔15〕Berge P Y Pomeau, Vidal C. Order within Chaos〔M〕. New York:John Wiley and Sons Inc,1984.329p.
|
[2] | 〔16〕Mandelbrot B B. The Fractal Geometry of Nature〔M〕. San Francisco:Freeman,1983.
|
[3] | 〔17〕Falconer K. Fractal Geometery: Mathematical Foundation and Applications〔M〕. New York:Wiley,1990.
|
[4] | 〔18〕Grassberger P, Procaccia I. Characterization of strange attrators〔J〕.Phys Rev.Lett, 1983,50:346~349.
|
[5] | 〔19〕Eckmann J P, Ruelle D. Ergodic theory of chaos and strange attractors〔J〕. Rev Mod Phys,1985,57:617~656.
|
[6] | 〔20〕Guckenheimer J, Holmes P. Nonlinear Oscillations,Dynamical Systems and Bifurcations of Vector Fields〔M〕.New York:Springer-Verlag,1983.453pp.
|
[7] | 〔21〕Kolmogorov A N. A new metric invariant of transient dynamical systems and automorphisms in Lebesguepaces〔J〕.Dokl Akad Nauk SSSR,1958,119:861~864(Sov Phys Dokl,112:426~429).
|
[8] | 〔22〕Wolf A,Swift J. Progress in computing Lyapunov exponents from experimental data〔A〕. In:Holton C W, Reichl L E,eds. Statistical Physics and Chaos in Fusion Plasmas〔C〕.New York: Wiley Pub,1984.
|
[9] | 〔23〕杨培才.湍流运动与非线性科学理论〔J〕.力学进展,1994,27(2):205~219.
|
[10] | 〔24〕Packard N H. Geometry from a time series〔J〕. Phy Rev Lett,1980, 45: 712.
|
[11] | 〔25〕Takens F. Detecting strange attractor in turbulence〔J〕.Le ture Notes in Math,1981, 898: 336.
|
[12] | 〔26〕方兆本.走出混沌〔M〕.长沙:湖南教育出版社,1995.71~81.
|
[13] | 〔27〕刘秉正.非线性动力学与混沌基础〔M〕.长春:东北师范大学出版社,1994.70~90.
|
[14] | 〔28〕Theiler J, Eubank S. Don' t bleach chaotic data〔J〕. Chaos,1993, 3: 771.
|
[15] | 〔29〕Ababrbanel H D I, Kennel M B. Local false nearest neigh-bors and dynamical dimensions from observed chaotic data〔J〕. Phys Rev, 1993,E47: 3 057.
|
[16] | 〔30〕Kantz H. A robust method to estimate the maximal lyapunov exponent of a time series〔J〕. Phys Rev,1994, A185: 77.
|
[17] | 〔31〕Farmer J D. Predicting chaotic time series〔J〕. Phys Rev Lett,1987,59:845.
|
[18] | 〔32〕Orcutt K F, Arritt R W. Comparative fractal dimension for daytime and nocturnal surface layer turbulence〔A〕. 11th Symp Boundayr Layer & Turb〔C〕. Charlotte: NC Amer Meterol Soc, 1995.
|
[19] | 〔33〕Ababrbanel H D I. Analysis of Observed Chaotic Data〔M〕.New York: Springer,1996.108~115.
|
[20] | 〔49〕Wolf A,Swift J B, Swinney HL,et al. Determining lyapunov exponents from a time series〔J〕. Physica,1988, 16D(3):285~317.
|
[21] | 〔50〕Lorenz E N. Dimension of weather and attractors〔J〕.Nature,1991,353:241~244.
|
[22] | 〔1〕Campbell D K. Choas/XAOC:Soviet-American Perspectives on Nonlinear Science〔M〕. The American Institute of Physics,New York:Springer Verlag,1990.500.
|
[23] | 〔2〕郝柏林.分叉混沌、奇怪吸引子、湍流及其它〔J〕.物理学进展,1983,3(3):329~416.
|
[24] | 〔3〕黄永念.分叉、分形、混沌和湍流之间的关系〔A〕.见:中国科学院力学研究所编.现代流体力学进展〔C〕.北京:科学出版社,1991.7~15.
|
[25] | 〔4〕胡非.湍流、间歇性与大气边界层〔M〕.北京:科学出版社,1995.12~17.
|
[26] | 〔5〕Hadamard J. Les surfaces a courbures opposees et leurs lignes geodesiques〔J〕. J Math Pures,1898, Appl,4:27~73.
|
[27] | 〔6〕Poincare H. Science et Methode.Ernest Flammarion〔M〕.(English translation is Science and Method. Dover Publications,1952.288).Dover:Dover Pub,1908.
|
[28] | 〔7〕Lorenz E N. Deterministic nonperiodic flow〔J〕.J Atmos Sci,1963, 20:130.
|
[29] | 〔8〕Li T-Y, Yorke J A. Period three implies chaos〔J〕.Am Math Mon,1975,82:985~992.
|
[30] | 〔9〕Ruelle D, Takens F.On the nature of turbulence〔J〕.Commun Math Phys,1971,20:167.
|
[31] | 〔10〕Ruelle D. Deterministic Chaos: the science and fiction〔J〕.Proc R Soc London, 1990, A 427:241.
|
[32] | 〔11〕Hao B-L. Choas〔M〕. River Edge:World Scientific Pub CO,1984.576p.
|
[33] | 〔12〕Tsonis A A, Elsner J B. Chaos, strange attractors and weather〔J〕.Bull Amer Meteor Soc,1989,70:14~23.
|
[34] | 〔13〕Marek M, Schreiber I. Chaotic Behavior of Deterministic Dissipative Systems〔M〕.Cambridge:Cambridge University Press,1991.365p.
|
[35] | 〔14〕Zeng X, Pielke R A, Eykholt R. Choas theory and its applications to the atmosphere〔J〕. Bulletin of the American Meteorological Society, 1993,74(4): 631~644.
|
[36] | 〔34〕Williams G P. Chaos Theory Tamed〔M〕. Great Britain:Taylor &Francis,1997.
|
[37] | 〔35〕Froyland J. Introduction to Chaos and Coherence〔M〕. New York: Institute of Physics Publishing, 1992.
|
[38] | 〔36〕Buzug T, Pfister G. Optimal delay time and embedding dimension for delay-time coordinates by analysis of the global static and local dynamical behavivour of strange attractors〔J〕. Phys Rev,1991, A 45:7 073.
|
[39] | 〔37〕Stanisic M M. The mathematical theory of turbulence〔M〕.Springer: The American Institute of Physics,1985.500pp.
|
[40] | 〔38〕Ruelle D. Chance and Chaos〔M〕. Princeton: Princeton University Press,1991.
|
[41] | 〔39〕Frisch U. Turbulence〔M〕. Cambridge: Cambridge Uni Press,1995.
|
[42] | 〔40〕是勋刚.湍流〔M〕.天津:天津大学出版社,1994.
|
[43] | 〔41〕Kantz H, Schreiber T. Nonlinear Time Series Analysis〔M〕.Cambridge: Cambridge Unversity Press,1997.
|
[44] | 〔42〕杨培才,刘锦丽,杨硕文.低层大气运动的混沌吸引子〔J〕.大气科学,1990,14(3): 335~341.
|
[45] | 〔43〕郭光.大气边界层湍流的混沌特性〔J〕.南京气象学院学报,1992,15(4):476~484.
|
[46] | 〔44〕林振山.非线性力学与大气科学〔M〕.南京:南京大学出版社,1993.
|
[47] | 〔45〕高志球,王介民.HEIFE绿洲和沙漠地区大气边界层湍流混沌特性研究〔J〕.高原气象,1998,17(4):398~402.
|
[48] | 〔46〕Jaramillo P G, Puente C E. Strange attractor in atmosphere boundary-layer turbulence〔J〕. Boundary-Layer Meteorol,1993, 64:175.
|
[49] | 〔47〕Rudolfo. W, Peter, Gerard,et al. Search for finite dimensional attractors in atmospheric turbulence〔J〕.Boundary-Layer Meteorology,1995, 73:1~14.
|
[50] | 〔48〕Theiler J. Efficient algorithm for estimating the correlation dimension from a set of discrete points〔J〕. Phys Rev,1987,A36:4456.
|
[51] | 〔51〕Kaimal J C, Finnigan J J. Atmospheric Boundary Layer Flows〔M〕. New York: Oxford Uni Press, 1994.
|
[52] | 〔52〕Panofsky H A, Dutton J A. Atmospheric Turbulence〔M〕.New York:John Wiley and Sons,1984.
|
[53] | 〔53〕Sorbjan Z. Structure of the atmospheric boundary layer〔M〕.New Jersey: Prentice Hall,1989.
|