〔1〕Krampitz G, Graser G . Molecular mechanism of biomineralization in the formation of calcified shells〔J〕.Angew Chem, 1988, 27: 1 145~1 156.
[2]
〔2〕Watabe N. Crystal growth of calcium carbonate in the inveterbrates〔J〕. Prog Crystal Growth Charact, 1981, 4:99~147.
[3]
〔3〕Zaremba C M, Belcher A M, Fritz M,et al. Critical transition in the biofabrication of abalone shells and flat pearls〔J〕. Chem Mater, 1996, 8:679~690.
[4]
〔4〕Curry J D. Mechanical properties of mother of pearl in tension〔J〕. Proc R Soc Lond B, 1977, 196: 443~463.
[5]
〔5〕Berman A, Addadi L, Weiner S. Interaction of sea-urchin skeleton macromolecules with growing crystals-a study of intracrystalline proteins〔J〕. Nature, 1988, 311(11): 546~548.
〔7〕Aksay I A, Trau M, Manne S,et al. Biominetic pathways for assembling inorganic thin films〔J〕. Science, 1996, 273(16):892~898.
[8]
〔8〕Stupp S I, Braun P V. Molecular manipulation ofmicrostructures: biomaterials, ceramics and semiconductors〔J〕. Science, 1997, 277(29): 1 242~1248.
[9]
〔9〕Weiner S, Addadi L. Design strategies in mineralized biological materials〔J〕. J Mater Chem, 1997,7(5): 689~702.
[10]
〔10〕Crenshaw M A. The soluble matrix from Mercenaria mercenaria shells〔J〕. Biomineralization, 1972, 6: 6~11.
[11]
〔11〕Weiner S, Addadi L. Acidic macromolecules of mineralized tissues: the controllers of crystal formation〔J〕. TIBS,1991, 16: 252~256.
[12]
〔12〕Keith J, Stockwell S, Ball D,et al. Comparative analysis of macromolecules in mollusc shells〔J〕. Comp Biochem Physiol, 1993, 105B(3~4): 487~496.
[13]
〔13〕Sikes S T, Wheeler A P. Regulators of biomineralization〔J〕.Chemtech, 1988, 10:620~626.
[14]
〔14〕Marxen J C, Hammer M, Gehrke T,et al. Carbohydrates of organic shell matrix and the shell-forming tissue of snail biomphalaria glabrate(Say)〔J〕. Biol Bull, 1998, 194: 231~240.
[15]
〔15〕Leeuw N H de, Parker S C. Surface structure and morphology of calcium carbonate polymorphs calcite,aragonite and vaterite: an atomistic approach〔J〕. J Phys Chem B, 1998, 102: 2 914~2 922.
[16]
〔16〕Addadi L, Weiner S. Interaction between acidic proteins and crystals: stereochemical requirements in biominerallization〔J〕. Proc Natl Acad Sci USA, 1985, 82: 4 110~4 114.
[17]
〔17〕Albeck S, Aizenberg J, Addadi L,et al. Interaction of various skeletal intracrystalline components with calcite crystals〔J〕. J Am Chem Soc , 1993, 115: 11 691~11 697.
[18]
〔18〕Aizenberg J, Albeck S, Weiner S,et al. Crystal-protein interactions studied by overgrowth of calcite on biogenic skeletal elements〔J〕. J Crystal Growth, 1994, 142: 156~164.
[19]
〔19〕Albeck S, Weiner S, Addadi L. Polysaccharides of intracystalline glycoproteins modulated crystal growth in vitro〔J〕. Chem Eur J, 1996, 2(3): 278~284.
[20]
〔20〕Kitano Y. The influence of organic material on the polymorphic crystallization of calcium carbonate〔J〕.Geochim Cosmochim Acta, 1965, 29: 29~41.
[21]
〔21〕Belcher A M, Wu X H, Christensen R J,et al. Control of crystal phase switching and orientation by soluble mollusc-shell proteins〔J〕. Nature, 1996, 381(2): 56~58.
[22]
〔22〕Falini G, Albeck S, Weiner S,et al. Control of aragonite or calcite polymorphism by mollusk shell macromolecules〔J〕.Science, 1996, 271(5): 67~69.
[23]
〔23〕Litvin A L, David S V, Mann S. Templated-directed synthesis of aragonite under supramolecular hydrogen-bonded langmuir monolayers〔J〕. Adv Mater, 1997, 9(2):124~127.
[24]
〔24〕Levi Y, Albeck S, Brack A,et al. Control over aragonite crystal nucleation and growth: an in vitro study of biominerallization〔J〕. Chem Eur J, 1998, 4(3): 389~396.
[25]
〔25〕Weiner S, Traub W. Macromolecules in mollusc shells and their function in biominerallization〔J〕. Phil Trans R Soc Lond B, 1984, 304: 425~434.
[26]
〔26〕Archibald D D, Qadri S B, Gaber B P. Modified calcite deposition due to ultrathin films on silicon substrates〔J〕.Langmuir, 1996, 12:538~546.
[27]
〔27〕Rajam S, Heywood B R, Walker J B A,et al. Oriented crystallization of CaCO3 under compressed monolayers, partⅠ: morphological studies of mature crystals〔J〕. J Chem Soc Farady Trans, 1991, 87(5): 727~734.
[28]
〔28〕Heywood B R, Rajam S, Mann S. Oriented crystallization of CaCO3 under compressed monolayers, partⅡ: morphology,structure and growth of immature crystal〔J〕. J Chem Soc Farady Trans, 1991, 87(5): 735~743.
[29]
〔29〕Heywood B R, Mann S. Molecular construction of oriented inorganic materials: controlled nucleation of calcite and aragonite under compressed langmuir monolayers〔J〕. Chem Mater , 1994, 6: 313~318.
[30]
〔30〕Berman A, Ahn D J, Lio A,et al. Total alignment of calcite at acidic polydiacetylene films: cooperativity at the organic-inorganic interface〔J〕. Science, 1995, 269(28): 515~518.
[31]
〔31〕Mann S. Molecular recognition in biominerallization〔J〕.Nature, 1988, 332(10): 119~124.
[32]
〔32〕Lochhead M J, Letellier S R, Vogel V. Assessing the role of interfacial electrostatics in oriented mineral nucleation at charged monolayers〔J〕. J Phys Chem, 1997, 101B: 10 821~10 827.
[33]
〔33〕Weiner S, Hood L. Soluble protein of organic matrix of mollusk shells: a potential template for shell formation〔J〕.Science, 1975, 190(5):987~988.
[34]
〔34〕Reeves N J, Evans J S. Polypeptide interaction at ice and biomineral interfaces are defined by secondary structure-dependent chain orientation〔J〕. J Phys Chem, 1997, 101B:6 665~6 669.
[35]
〔35〕Addadi L, Moradian J, Shay S,et al. A chemical model for the cooperation of sulphates and carboxylates in calcite crystal nucleation: relevance to biominerallization〔J〕. Proc Natl Acad Sci USA, 1987, 84: 2 732~2 736.