Lynch C. Big data: How do your data grow?[J]. Nature, 2008, 455(7 209):28-29.
[2]
Mayer-Schnberger V, Cukier K. Big Data: A Revolution that Will Transform How We Live, Work, and Think[M]. Boston: Eamon Dolan/Houghton Mifflin Harcourt,2013.
[3]
Lohr S. The Age of Big Data[N/OL]. New York Times, 2012-02-11.[2013-12-29].http:∥www.nytimes.com/2012/02/12/sunday-review/big-datas-impact-in-the-world.html?_r=0.
[4]
Hey T, Tansley S, Tolle K. The Fourth Paradigm: Data-intensive Scientific Discovery[M]. Washington: Microsoft Research,2009.[潘教峰,张晓林,译. 第四范式:数据密集型的科学发现[M]. 北京: 科学出版社, 2012.]
[5]
Lehnert K. The PetDB data collection: Impact on science[C]∥2007 GSA Denver Annual MeetingAbstracts.Colorado:Colorado Convention Center,2007.
[6]
Lehnert K, Su Y, Langmuir C H,et al. A global geochemical database structure for rocks[J]. Geochemistry, Geophysics, Geosystems, 2000, 1(1): 1 012, doi:10.1029/1999GC000026.
[7]
Walker J D, Lehnert K A, Hofmann A W,et al. EarthChem: International Collaboration for Solid Earth Geochemistry in Geoinformatics[C].Florida Avenue, NW: AGU Fall Meeting 2005, 2005.
[8]
Sarbas B, Nohl U. The GEOROC database—A decade of "online geochemistry"[J]. Geochimica et Cosmochimica Acta Supplement, 2009, 73:1 158.
[9]
Sarbas B, Nohl U, Busch U,et al. The geochemical database GEOROC—What’s the News[C]∥Geophysical Research Abstracts. Vienna, Austria: European Geosciences Union 2006, 2006.
[10]
Schewe I. The PANGAEA Database-Get Order in Your Scientific Primary Data[C].Carvoeiro: HERMES 3rd Annual Meeting,2008, 3: 4.
[11]
Schindler U, Diepenbroek M, Grobe H. PANGAEA—Research data enters scholarly communication[C]∥EGU General Assembly Conference 2012,Abstracts. Vienna, Austria: EGU,2013,14: 13 378.
[12]
Ichiyama Y, Hanafusa Y, Soma S. The “GANSEKI” database of ocean-floor rock samples[J]. Journal of Geology Society Japan, 2011, 117(10):579-584.[市山祐司, 華房康憲, 相馬伸介. 深海底岩石試料データベース「GANSEKI」の紹介[J]. 地質学雑誌, 2011, 117(10):579-584.]
[13]
Spear F S, Hallett B, Pyle J M, et al. MetPetDB: A database for metamorphic geochemistry[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(12): Q12005,doi:10.1029/2009GC002766.
[14]
Walker J D, Bowers T D, Black R A, et al. A geochemical database for western North American volcanic and intrusive rocks (NAVDAT)[J]. Special Papers-Geological Society of America, 2006,397:61.
[15]
Carlson R W, Walker D, Black R,et al. NAVDAT—A western north american volcanic and intrusive rock geochemical database[C]∥GSA Annual Meeting Abstracts.Boston: Geological Society of America, 2001.
[16]
Saal A E, Hauri E H, Langmuir C H, et al. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’supper mantle[J]. Nature, 2002, 419(6 906):451-455.
[17]
Herzberg C, Asimow P D, Arndt N, et al. Temperatures in ambient mantle and plumes: Constraints from basalts,picrites, and komatiites[J]. Geochemistry, Geophysics, Geosystems, 2007,8(2): Q02006,doi:10.1029GC001390.
[18]
Salters V J, Stracke A. Composition of the depleted mantle[J]. Geochemistry, Geophysics, Geosystems, 2004, 5(5): Q05B07,doi:10.1029/2003GC000597.
[19]
Thirlwall M F, Gee M, Taylor R N, et al. Mantle components in Iceland and adjacent ridges investigated using double-spike Pb isotope ratios[J]. Geochimica et Cosmochimica Acta,2004, 68(2):361-386.
[20]
Weyer S, Münker C, Mezger K. Nb/Ta, Zr/Hf and REE in the depleted mantle: Implications for the differentiation history of the crust-mantle system[J].Earth and Planetary Science Letters, 2003, 205(3):309-324.
[21]
Cipriani A, Brueckner H K, Bonatti E,et al. Oceanic crust generated by elusive parents: Sr and Nd isotopes in basalt-peridotite pairs fromthe Mid-Atlantic Ridge[J]. Geology, 2004, 32(8): 657-660.
[22]
Spiegelman M, Kelemen P B. Extreme chemical variability as a consequence of channelized melt transport[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(7): 1 055, doi:10.1029/2002GC000336.
[23]
van de Flierdt T, Frank M, Halliday A N, et al. Tracing the history of submarine hydrothermal inputs and the significance of hydrothermal hafnium for the seawater budget—A combined Pb-Hf-Nd isotope approach[J]. Earth and Planetary Science Letters, 2004, 222(1):259-273.
[24]
Yamagishi Y, Katsuhiko S, Hajimu T, et al. Visualization of geochemical data for rocks and sediments in Google Earth: Development of a data converter application for geochemical and isotopic data sets in database systems[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(3): Q3016,doi:10.1029/2010GC003490.[JP]
[25]
Rauch J N. Global distributions of Fe, Al, Cu, and Zn contained in Earth’s derma layers[J]. Journal of Geochemical Exploration, 2011,110(2):193-201.
[26]
Rubin K H, Sinton J M. Inferences on mid-ocean ridge thermal and magmatic structure from MORB compositions[J]. Earth and Planetary Science Letters, 2007,260(1/2):257-276.
[27]
Class C, Goldstein S L. Evolution of helium isotopes in the Earth’s mantle[J]. Nature, 2005,436(7 054):1 107-1 112.
[28]
Ballentine C J, Marty B, Sherwood Lollar B, et al. Neon isotopes constrain convection and volatile origin in the Earth’s mantle[J]. Nature, 2005,433(7 021):33-38.
[29]
Carbotte S M, Small C, Donnelly K. The influence of ridge migration on the magmatic segmentation of mid-ocean ridges[J]. Nature, 2004, 429(6 993):743-746.
[30]
Escartín J, Smith D K, Cann J, et al. Central role of detachment faults in accretion of slow-spreading oceaniclithosphere[J]. Nature, 2008,455(7 214):790-794.
[31]
Sharp Z D, Barnes J D, Brearley A J, et al. Chlorine isotope homogeneity of the mantle, crust andcarbonaceous chondrites[J]. Nature,2007,446(7 139):1 062-1 065.
[32]
Wang Pinxian. Oceanography from inside the ocean[J]. Advances in Earth Science, 2013, 28(5): 517-520.[汪品先. 从海洋内部研究海洋[J]. 地球科学进展, 2013, 28(5): 517-520.]
[33]
Yao Yupeng. Current workforce pattern of the geological basic research in China—Based on the statistics of the proposals for the National Natural Science Foundation of China[J]. Advances in Earth Science, 2012, 27(5): 581-588.[姚玉鹏. 地质学基础研究队伍现状——根据国家自然科学基金申请格局的分析[J]. 地球科学进展, 2012, 27(5): 581-588.]
[34]
Ma Weifeng,Wang Xiaorui,Gao Shan. Geochemistry science database system for east China based on relational database and WebGIS[J].Earth Science—Journal of China University of Geosciences, 2008, 33(3): 423-430.[马维峰, 王晓蕊, 高山. 基于关系数据库和 WebGIS 的中国东部地球化学科学数据库[J]. 地球科学:中国地质大学学报, 2008, 33(3): 423-430.]
[35]
Shang Ruxiang, Zeng Guangyu, Li Dexing.Data base management system and application programs for the research of volcanic rocks[J]. Acta Petrologica et Mineralogica,1989,8(4):331-337.[尚如相, 曾广瑜, 李德兴. 火山岩岩石化学, 地球化学数据库管理系统及应用程序[J]. 岩石矿物学杂志, 1989, 8(4):331-337.]
[36]
Shang Ruxiang. Development and present condition of the igneous database[J].Geological Review,1999, 45(7):26-32.[尚如相.火成岩数据库的发展与现状[J]. 地质论评, 1999,45(7):26-32.]
[37]
Shi Changyi. Geochemical database and its application[J]. Geophysical & Geochemical Exploration, 2004, 28(5):382-387.[史长义.地球化学数据库及其应用概况[J]. 物探与化探, 2004, 28(5):382-387.]
[38]
Xu Weichang, Wang Yaonan, Wang Ping, et al. Petrochemistry, mineral chemistry and geochemistry database for magmatic rocks from China[J]. Acta Petrologica sinica, 1991, (2):95.[徐伟昌, 王耀南, 王平, 等.全国岩浆岩岩石化学、矿物化学及地球化学数据库[J]. 岩石学报, 1991, (2):95.]
[39]
Zhang Cong, Yu Bingsong, Mo Shaolong, et al. Design and development of rock sample library based on oracle[J]. Chinese Geological Education, 2012,21(2):56-59.[张聪, 于炳松, 莫少龙, 等.基于 Oracle 的岩石标本数据库设计与实现[J]. 中国地质教育, 2012, 21(2):56-59.]
[40]
Zhao Qiren. We have built the world largest database for geochemical exploration[J]. Chemical Minerals, 2005, 27(2):117.[赵其仁.我国建成世界最大规模地球化学勘查数据库[J]. 化工矿产地质, 2005, 27(2):117.]
[41]
Ma Jianwen, Qin Sixian. Recent advances and development of data assimilation algorithms[J]. Advances in Earth Science, 2012, 27(7): 747-757.[马建文,秦思娴. 数据同化算法研究现状综述[J]. 地球科学进展, 2012, 27(7): 747-757.]