全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

蒸发岩矿物单个流体包裹体成分测定方法研究进展

DOI: 10.11867/j.issn.1001-8166.2014.04.0475, PP. 475-481

Keywords: 盐类矿物,古卤水,化学组分,分析技术

Full-Text   Cite this paper   Add to My Lib

Abstract:

蒸发岩矿物流体包裹体,作为古卤水地球化学信息的有效载体,在反演古海洋、古湖泊成矿物质来源、水文地球化学演化过程中都具有十分重要的作用,其提取和分析技术一直备受盐矿学者重视。综述了近年来盐类矿物单个流体包裹体成分测定的主要方法,包括微钻—超微分析法、激光剥蚀电感耦合等离子体质谱法、扫描电镜—能谱法及激光拉曼光谱法,对其测试流程、应用范围、分析精度及优缺点进行了对比和总结;提出了多种方法交叉结合的应用思路,以满足包裹体多元素定量分析的要求,并对其应用前景提出了建议。

References

[1]  Das N J, Horita J, Holland H D. Chemistry of fluid inclusions in halite from the Salina Group of the Michigan Basin: Implications for Late Silurian seawater and the origin of sedimentary brines[J]. Geochimica et Cosmochimica Acta, 1990, 54:319-327.
[2]  Horita J, Weinberg A, Das N, et al. Brine inclusion in halite and the origin of the Middle Devonian Prairie evaporites of Western Canada[J]. Journal of Sedimentary Research, 1996, 66:956-964.
[3]  Horita J, Friedman T J, Lazar B, et al. The compositon of Permian seawater[J]. Geochimica et Cosmochimica Acta, 1991, 55:417-432.
[4]  Shepherd T J, Ayora C, Cendon D I, et al. Quantitative solute analysis of single fluid inclusions in halite by LA-ICP-MS and cryo-SEM-EDS: Complementary microbeam techniques[J]. European Journal of Mineralogy, 1998, 10:1 097-1 108.
[5]  Ghazi A M, Shuttleworth S. Trace element determination of single fluid inclusions by laser ablation ICP-MS: Applications for halite from sedimentary basins[J]. The Analyst, 2000, 125(1):205-210.
[6]  Kelly W C, Burgio P A. Cryogenic scanning electron microscopy of fluid inclusions in ore and gangue minerals[J]. Economic Geology, 1983, 78:1 262-1 267.
[7]  Ayora C, Garcia-Veigas J, Pueyo J J. The chemical and hydrological evolution of an ancient potash-forming evaporite basin in Spain as constrained by mineral sequence, fluid inclusion composition, and numerical simulation)[J]. Geochimica et Cosmochimica Acta, 1994, 58: 3 379-3 394.
[8]  Ayora C, Garcia-Veigas J, Pueyo J J. X-ray microanalysis of fluid inclusions and its application to the geochemical modeling of evaporite basins[J]. Geochimica et Cosmochimica Acta, 1994, 58:43-55.
[9]  Fanlo I, Ayora C. The evolution of the Lorraine evaporite basin: Implications for the chemical and isotope composition of the Triassic ocean[J]. Chemical Geology, 1998, 146:135-154.
[10]  Cendon D I, Ayora C, Pueyo J, et al. The chemical and hydrological evolution of the Mulhouse potash basin (France): Are“marine” ancient evaporites always representative of synchronous seawater chemistry?[J]. Chemical Geology, 2008, 252:109-124.
[11]  Frezzottia M L, Tecceb F, Casagli A. Raman spectroscopy for fluid inclusion analysis[J]. Journal of Geochemical Exploration, 2012, 112:1-20.
[12]  Mernagh T P, Wilde A R. The use of the Laser Raman microprobe for the determination of salinity in fluid inclusion[J]. Geochimica et Cosmochimica Acta, 1989, 53:765-771.
[13]  Ding Junying, Ni Pei, Rao Bing, et al. Evaluation of the Laser Raman microprobe method for the determination of salinity in a single fluid inclusion by using synthetic fluid inclusions[J]. Geological Riview, 2004, 50(2):203-209. [丁俊英, 倪培, 饶冰, 等. 显微激光拉曼光谱测定单个包裹体盐度的实验研究[J]. 地质论评, 2004, 50(2):203-209. ]
[14]  Ye Meifang, Wang Zhihai, Tang Nan’an. Quantitative analysis of several common anions in salt solutions using Laser Raman spectrometer[J]. Northwestern Geology, 2009, 42(3):120-126. [叶美芳, 王志海, 唐南安. 盐水溶液中常见阴离子团的激光拉曼光谱定量分析研究[J]. 西北地质, 2009, 42(3):120-126. ]
[15]  Thomas R. Determination of the H3BO3 concentration in fluid and melt inclusions in granite pegmatites by Laser Raman microprobe spectroscopy[J]. American Mineralogist, 2002, 87:56-68.
[16]  Dubessy J, Geisler D, Kosztolany C, et al. The determination of sulphate in fluid inclusions using the MOLE Raman microprobe—Application to a Keuper halite and geochemical consequences[J]. Geochimica et Cosmochimica Acta, 1983, 47:1-10.
[17]  Bakker R J. Raman spectra of fluid and crystal mixtures in the system H2O, H2O-NaCl and H2O-MgCl2 at low temperatures: Applications to fluid inclusion research[J]. The Canadian Mineralogist, 2004, 42:1 283-1 314.
[18]  Baumgartner M, Bakker R J. Raman spectroscopy of pure H2O and NaCl-H2O containing synthetic fluid inclusions in quartz—A study of polarization effects[J]. Mineralogy and Petrology, 2009, 95:1-15.
[19]  Baumgartner M, Bakker R J. Raman spectroscopy of ice and salt hydrates in synthetic fluid inclusions[J]. Chemical Geology, 2010, 275:58-66.
[20]  Derome D, Cathelineau M, Fabre C. Paleo-fluid composition determined from individual fluid inclusions by Raman and LIBS: Application to mid-proterozoic evaporitic Na-Ca brines(Alligator Rivers Uranium Field, northern territories Australia)[J]. Chemical Geology, 2007, 237:240-254.
[21]  Dubessy J, Audeoud D, Wilkins R, et al. The use of the Raman microprobe Mole in the determination of the electrolytes dissolved in the aqueous phase of fluid inclusions[J]. Chemical Geology, 1982, 37:137-150.
[22]  Dubessy J, Boiron M C, Moissette A, et al. Determination of water, hydrate and pH in fluid inclusions by micro-Raman spectrometry[J]. European Journal of Mineralogy, 1992, 4:885-894.
[23]  Sanmson I M, Walker R T. Cryogenic Raman spectroscopic studies in the system Na-CaCl2-H2O and implications for low-temperature phase behaviour in aqueous fluid inclusions[J]. Canadian Mineralogist, 2000, 38:35-43.
[24]  Cao Qing, Zhao Jingzhou, Zhao Xiaohui, et al. Characteristics and significance of fluid inclusions from Majiagou Formation, Yichuan-Huangling area, Ordos Basin[J]. Advances in Earth Science, 2013, 28(7):819-828. [曹青, 赵靖舟, 赵小会, 等. 鄂尔多斯盆地宜川—黄陵地区马家沟组流体包裹体特征及其意义[J]. 地球科学进展, 2013, 28(7):819-828. ]
[25]  Kovalevych V M, Carmona V, Pueyo J J, et al, Ultramicrochemical Analyses (UMCA) and Cryogenic Scanning Electron Microscopy (Cryo-SEM-EDS) of brines in halite-hosted fluid inclusions: A comparative study of analytical data[J]. Geochemistry International, 2005, 43:268-276.
[26]  Zhang Chengjiang, Xu Zhengqi, Ni Shijun, et al. Genesis of potassium bearing brine in Pingluoba structure region, Western Sichun Depression[J]. Advances in Earch Science, 2012, 27(10):1 054-1 060. [张成江, 徐争启, 倪师军, 等. 川西坳陷平落坝构造富钾卤水成因探讨[J]. 地球科学进展, 2012, 27(10):1 054-1 060. ]
[27]  Melvin J L. Evaporites, Petroleum and Mineral Resources. Dev. in Sedimentology. Vol. 50[M]. Amsterdam:Elsevier Science Publishers, 1991.
[28]  Lu Huanzhang, Fan Hongrui, Ni Pei, et al. Fluid Inclusions[M]. Beijing:Science Press, 2004. [卢焕章, 范宏瑞, 倪培, 等. 流体包裹体[M]. 北京:地质出版社, 2004. ]
[29]  Last W M, Smol J P, Birks H J. Tracking Environmental Change Using Lake Sediments: Volume 2: Physical and Geochemical Methods[M]. Dordrecht: Kluwer Academic Publisers, 2001.
[30]  Roedder E. Fluid inclusions[C]∥Ribhe P H, ed. Reviews in Mineralogy, Vol. 12. Washington DC:Mineralogical Society of America, 1984.
[31]  Goldstein R H, Reynolds T J. Systematics of fuid inclusions in diagenetic minerals[J]. SEPM Short Course, 1994, 31:199.
[32]  Sun Xiaohong, Hu Mingyue, Liu Chenglin, et al. Composition determination of single fluid inclusions in salt minerals by Laser Ablation ICP-MS[J]. Chinese Journal of Analytical Chemistry, 2013, 41(2): 235-241.
[33]  He Faming, Liu Shichang, Bai Chongqing, et al. Manual of Mineral Identification Method[M]. Beijing:Chemical Industry Press, 1988. [何法明, 刘世昌, 白崇庆, 等. 盐类矿物鉴定工作方法手册[M]. 北京:化学工业出版社, 1988. ]
[34]  Brewster D. On the existence of two new fluids in the cavities of minerals, which are immiscible, and possess remarkable physical properties[J]. Edinburgh Philosophical Journal, 1823, 9:94-107.
[35]  Nicol W. Observations on the fluids contained in crystallized minerals[J]. Edinburgh New Philosophical Journal, 1828, 5:94-96.
[36]  Petrichenko I O. Methods of study of inclusions in minerals in saline deposits[J]. Fluid Inclusion Research, 1979, 12:114-274.
[37]  Lazar B, Holland H D. The analysis of fluid inclusions in halite[J]. Geochimica et Cosmochimica Acta, 1988, 52:485-490.
[38]  Shepherd T J, Chenery S R. Laser ablatiom ICP-MS elemental analysis of individual fluid inclusions: An evaluation study[J]. Geochimica et Cosmochimica Acta, 1995, 59:3 997-4 007.
[39]  Ayora C, Fontarnau R. X-ray microanalysis of frozen fluid inclusion[J]. Chemical Geology, 1990, 89:135-148.
[40]  Timofeeff M N, Lowenstein T K, Blackburn W H. ESEM-EDS:An improved technique for major chemical analysis of fluid inclusion[J]. Chemical Geology, 2000, 1 164:171-182.
[41]  Rosasco G J, Roedder E. Application of a new Raman microprobe spectrometer to nondestructive analysis of sulfate and other ions in individual phases in fluid inclusions in minerals[J]. Geochimica et Cosmochimica Acta, 1979, 43:1 907-1 915.
[42]  Pasteris J D, Wopenka B, Seitz J C. Practical aspects of quantitative laser Raman microprobe spectroscopy for the study of fluid inclusions[J]. Geochimica et Cosmochimica Acta, 1988, 52:979-988.
[43]  Baumgartner M, Bakker R J. Raman spectra of ice and salt hydrates in synthetic fluid inclusions[J]. Chemical Geology, 2010, 275:58-66.
[44]  Holser W T. Chemistry of brine inclusions in Permian salt from Hutchinson, Kansas[C]∥Bersticker A C, ed. Symposium on Salt. Ohia:Northern Ohio Geological Society, 1963:86-95.
[45]  Holser W T. Trace elements and isotopes in evaporates[C]∥Burns R G, ed. Marine Minerals, Reviews in Mineralogy, V6. Washington DC:Mineralogical Society of America, 1979:295- 346.
[46]  Lowenstin T K, Hardie L A. Criteria for the recognition of salt-pan evaporates[J]. Sedimentology, 1985, 32:627-644.
[47]  Kovalevych V M, Marshall T, Peryt T M, et al. Chemical composition of seawater in Neoproterozoic:Results of fluid inclusion study of halite from Salt Range (Pakistan) and Amadeus Basin (Australia)[J]. Precambrian Research, 2006, 144(1):39-51.
[48]  Oleh Y, Petrychenko, Peryt T M, et al. Early Cambrian seawater chemistry from fluid inclusions in halite from Siberian evaporites[J]. Chemical Geology, 2005, 219:149-161.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133