全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

全球海表温度在不同时间尺度的主模态对比分析

DOI: 10.11867/j.issn.1001-8166.2014.07.0844, PP. 844-853

Keywords: 全球尺度,海表温度,主模态,时间尺度

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用1880—2009年HadISST资料,去掉百年全球变暖的信号,研究发现东太平洋、北太平洋和北大西洋都有较强的年际和年代际振荡信号,特别是赤道东太平洋南侧的年代际振荡是不容忽视的。对全球范围的海表温度资料做EOF分析发现,存在3种主要的全球尺度信号,第一模态为太平洋型、第二模态为北大西洋型以及第三模态为赤道中太平洋型。特别指出,第三模态是CPENSO在全球模态中的表现。这3种模态在年际和年代际尺度都有显著的信号,在无滤波的情况下,3种模态方差贡献之和为34%。在年代际以上时间尺度范围,3种模态方差贡献之和为61%。在各种时间尺度中,这3种信号与全球平均温度都有一定的联系,尤其第一、二模态的影响最为重要,在年代际尺度中,第一、二模态方差贡献之和达到50%。2005年以后全球并没有明显增温,可能与前2个模态同时下降有关。

References

[1]  Yuan, Wallace J M, Battisti D S. ENSO-like interdecadal variability: 1900-1993[J].Journal of Climate, 1997, 10(5):1 004-1 020.
[2]  N J, Hare S R, Zhang Y, et al. A Pacific interdecadal climate oscillation with impacts on salmon production [J]. Bulletin of the American Meteorological Society, 1997, 78(6): 1 069-1 079.
[3]  S, Casey T, Folland C, et al. Inter-decadal modulation of the impact of ENSO on Australia[J]. Climate Dynamics, 1999, 15(5): 319-324.
[4]  S, Gutzler D, Wang H, et al. A US CLIVAR project to assess and compare the responses of global climate models to drought-related SST forcing patterns: Overview and results[J]. Journal of Climate, 2009, 22(19): 5 251-5 272.
[5]  G A, Goddard L, Murphy J, et al. Decadal prediction: Can it be skilful? [J].Bulletin of the American Meteorological Society, 2009,90:1 467-1 485.
[6]  Y. Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions[J]. Journal of Climate, 1994, 7(1): 141-157.
[7]  T L, Mann M E. Observed and simulated multidecadal variability in the Northern Hemisphere[J]. Climate Dynamics,2000, 16(9): 661-676.
[8]  T L, Zhang R, Mann M E. Decadal to centennial variability of the Atlantic from observations and models[M]∥ Geophysical Monograph Series 173. Washington DC: American Geophysical Union,2007:131-148.
[9]  D B, Mestas Nuez A M, Trimble P J. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US [J]. Geophysical Research Letters, 2001, 28(10): 2 077-2 080.
[10]  J R, Folland C K, Scaife A A. Climate impacts of the Atlantic multidecadal oscillation[J]. Geophysical Research Letters, 2006, 33: L17706, doi:10.1029/2006GL026242.
[11]  Hao,Wang Zhaomin,Shi Jiuxin. The role of the southern ocean physical processes in global climate system[J]. Advances in Earth Science, 2012, 27(4): 398-412.[马浩,王召民,史久新. 南大洋物理过程在全球气候系统中的作用[J]. 地球科学进展,2012,27(4): 398-412.]
[12]  Fengying, Song Qiaoyun. Spatial distribution of the global sea surface temperature with interdecadal scale and their potential influence on meiyu in middle and lower reaches of Yangtze River[J].Acta Meteorological Sinica, 2005, 63(4): 477-484.[魏凤英, 宋巧云.全球海表温度年代际尺度的空间分布及其对长江中下游梅雨的影响[J].气象学报, 2005, 63(4): 477-484.]
[13]  Zhihong, Li Jianping, Tu Qipu, et al. Regional characteristics of the decadal and interdecadal variations for global temperature field during the last century[J].Chinese Journal of Atmospheric Sciences, 2004, 28(4): 545-548.[江志红, 李建平, 屠其璞,等. 20世纪全球温度年代和年代际变化的区域特征[J]. 大气科学, 2004, 28(4): 545-548.]
[14]  Dong, Li Jianping. Main decadal abrupt changes and decadal modes in global sea surface temperature field [J]. Chinese Journal of Atmospheric Sciences, 2007,31(5): 839-854.[肖栋,李建平.全球海表温度场中主要的年代际突变及其模态[J].大气科学,2007,31(5): 839-854.]
[15]  C, Li J, Jin F F, et al. Sea surface temperature inter-hemispheric dipole and its relation to tropical precipitation[J]. Environmental Research Letters, 2013, 8, doi:10.1088/1748-9326/8 /4/044006.
[16]  W,Li J, Zhao X. Sea surface temperature cooling mode in the Pacific cold tongue [J]. Journal of Geophysical Research, 2010, 115: C12042, doi:10.1029/2010JC006501.
[17]  P, Sui C H. An observational analysis of the oceanic and atmospheric structure of global-scale multi-decadal variability [J]. Advances in Atmospheric Sciences, 2014, 31(2): 316-330.
[18]  M, Chavez F. Global modes of sea surface temperature variability in relation to regional climate indices[J]. Journal of Climate, 2011, 24(16): 4 314-4 331.
[19]  N A, Parker D E, Horton E B, et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. Journal of Geophysical Research, 2003, 108(D14): 4 407, doi:10.1029/2002JD002670.
[20]  Z, Huang N E, Wallace J M, et al. On the time-varying trend in global-mean surface temperature[J]. Climate Dynamics, 2011, 37(3/4): 759-773.
[21]  J, Ruedy R, Glascoe J, et al. GISS analysis of surface temperature change [J]. Journal of Geophysical Research, 1999, 104(D24): 30 997-31 022.
[22]  Ziniu, Zhong Qi, Yin Zhiqiang, et al. Advances in the research of impact of decadal solar cycle on modern climte [J].Advances in Earth Science, 2013, 28(12):1 335-1 348.[肖子牛,钟琦,尹志强,等.太阳活动年代际变化对现代气候影响的研究进展[J]. 地球科学进展,2013,28(12):1 335-1 348.]
[23]  C S, Widmann M, Dymnikov V P, et al. The effective number of spatial degrees of freedom of a time-varying field[J]. Journal of Climate, 1999, 12(7): 1 990-2 009.
[24]  J, An S I, Yeh S W, et al. ENSO-Like and ENSO-Induced tropical Pacific decadal variability in CGCMs[J]. Journal of Climate, 2013, 26(5): 1 485-1 501.
[25]  C, Phillips A S, Alexander M A. Twentieth century tropical sea surface temperature trends revisited [J]. Geophysical Research Letters, 2010, 37(10), doi:10.1029/2010GL043321.
[26]  Z. Dynamics of interdecadal climate variability: A historical perspective [J]. Journal of Climate, 2012, 25(6): 1 963-1 995.
[27]  Wenjun, Wang Lei, Xiang Baoqiang, et al. Impacts of two types of La Nia on the NAO during boreal winter [J]. Climate Dynamics, 2014, doi:10.1007/s00382-014-2155-z.
[28]  H, Ashok K, Behera S K, et al. Impacts of recent El Nio Modoki on dry/wet conditions in the Pacific rim during boreal summer[J]. Climate Dynamics, 2007, 29(2/3): 113-129.
[29]  K, Yamagata T. Climate change: The El Nio with a difference[J]. Nature, 2009, 461(7 263): 481-484.
[30]  H Y, Yu J Y. Contrasting eastern-Pacific and central-Pacific types of ENSO[J]. Journal of Climate, 2009, 22(3): 615-632.
[31]  J Y, Zou Y, Kim S T, et al. The changing impact of El Nio on US winter temperatures[J]. Geophysical Research Letters, 2012, 39(15), doi:10.1029/2012GL052483.
[32]  P H, Li T. Interdecadal relationship between the mean state and El Nio types[J]. Journal of Climate, 2013, 26(2): 361-379.
[33]  S, Donner S. The influence of different El Nio types on global average temperature[J]. Geophysical Research Letters, 2014, 41(6): 2 093-2 099.
[34]  J, Del Genio A D, Carlson B E, et al. The spatiotemporal structure of twentieth-century climate variations in observations and reanalyses. Part I: Long-term trend[J]. Journal of Climate, 2008, 21(11): 2 611-2 633.
[35]  A, Del Genio D, Carlson B E, et al. The spatiotemporal structure of twentieth-century climatevariations in observations and reanalyses. Part II: Pacific pandecadal variability[J]. Journal of Climate,2008,21: 2 634-2 649.
[36]  J, Sun C, Jin F F. NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability[J]. Geophysical Research Letters, 2013, 40(20): 5 497-5 502.
[37]  M, Kushnir Y, Seager R, et al. Forced and internal twentieth-century sst trends in the north atlantic[J]. Journal of Climate,2009, 22(6): 1 469-1 481.
[38]  Y, Xie S P. Recent global-warming hiatus tied to equatorial Pacific surface cooling[J]. Nature, 2013, 501(7 467): 403-407.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133