Ding L, Xu Q, Yue Y H, et al . The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene-Eocene Linzhou Basin[J]. Earth and Plant Science Letters,2014, 392:250-264.
[2]
Xu Ren, Tao Junrong, Sun Xiangjun. On the discovery of a Quercus Semicarpifolia bed in Mount Shisha Pangma and its significance in botany and geology[J]. Acta Botanica Sinica, 1973, 15(1): 103-119.[徐仁,陶君荣,孙湘君. 希夏邦马峰高山栎化石层的发现及其在植物学和地质学上的意义[J]. 植物学报, 1973, 15(1):103-119.]
[3]
Xu Ren. Vegetation changes in the past and the uplift of Qinghai-Xizang Plateau[M]//Proceedings of Symposium of Qinghai-Xizang (Tibet) Plateau. Geology, Geological History and Origin of Qinghai-Xizang Plateau. Beijing: Science Press,1981:8-18.[徐仁. 大陆漂移与喜马拉雅山上升的古植物学证据[M]//中国科学院青藏高原综合考察队编.青藏高原隆升的时代、幅度和形式. 北京:科学出版社,1981:8-18.]
[4]
Garzione C N, Quade J, DeCelles P G, et al . Predicting paleoelevation of Tibet and the Himalaya from delta O-18 vs. altitude gradients in meteoric water across the Nepal Himalaya[J]. Earth and Plant Science Letters, 2000, 183: 215-229.
[5]
DeCelles P G, Quade J, Kapp P, et al . High and dry in central Tibet during the Late Oligocene[J]. Earth and Plant Science Letters, 2007, 253:389-401.
[6]
Ding Lin, Xu Qiang, Zhang Liyun, et al . Regional variation of river water oxygen isotope and empirical elevation prediction models in Tibetan Plateau[J].Quaternary Sciences, 2009, 29(1):1-12.[丁林,许强,张利云,等.青藏高原河流氧同位素区域变化特征与高度预测模型建立[J].第四纪研究,2009, 29(1):1-12.]
[7]
Zhang Kexin, Wang Guocan, Ji Junliang, et al . Paleogene-Neogene stratigraphic realm and sedimentary sequence of the Qinghai-Tibet Plateau and their response to uplift of the plateau[J]. Science in China (Series D), 2010, 53(9):1 271-1 294.[张克信,王国灿,季军良,等.青藏高原古近纪—新近纪地层分区与序列及其对隆升的响应[J].中国科学:D 辑,2010,40(12):1 632-1 654.]
[8]
Xu Q, Ding L, Zhang L Y, et al . Paleogene high elevations in the Qiangtang Terrane, central Tibetan Plateau[J]. Earth and Planetary Science Letters, 2013, 362:31-42.
[9]
Saylor J E, Quade J, Dellman D L, et al . The Late Miocene through present paleoelevation history of southwestern Tibet[J]. American Journal of Science, 2009, 309:1-42.
[10]
Murphy A M, Saylor J, Ding L. Late Miocene topographic inversion in southwest Tibet on intergratedpaleoelevation reconstructions and structural history[J]. Earth and Plant Science Letters, 2009, 282:1-9.
[11]
Rowley D B, Currie B S. Palaeo-altimetry of the late Eocene to Miocene Lunpola Basin, central Tibet[J]. Nature,2006, 439:677-681.
[12]
Currie B S, Rowley D B, Tabor N J. Middle Miocene paleoaltimetry of southern Tibet: Implications for the role of mantle thickening and delamination in the Himalayan orogeny[J]. Geology, 2005, 33:181-184.
[13]
Cyr A J, Currie B S, Rowley D B. Geochemical evaluation of Fenghuoshan Group lacustrine carbonates, North-Central Tibet: Implications for the paleoaltimetry of the Eocene Tibetan Plateau[J]. Journal of Geology, 2005, 113:517-533.
[14]
Garzione C N, Dettman D L, Quade J, et al . High times on the Tibetan Plateau: Paleoelevation of the Thakkholagraben, Nepal[J]. Geology, 2000, 28:339-342.
[15]
Hoke G D, Jing L Z, Hren M T, et al . Stable istopes reveal high southeast Tibetan Plateau margin since the Paleogene[J]. Earth and Planetary Science Letters, 2014, 394:270-278.
[16]
Huntingkon K W, Saylor J, Quade J, et al . High late Miocene-Pliocene elevation of the Zhada Basin, southwestern Tibetan Plateau, from carbonate clumped isotope thermometry[J]. Geological Society of America Bulletin, 2014, doi:10.1130/B31000.1.
[17]
Zhuang G S, Brandon M T, Pagani M, et al . Leaf wax stable isotopes from Northern Tibetan Plateau: Implications for uplift and climate since 15 Ma[J]. Earth and Planetary Science Letters, 2014, 390:186-198.
[18]
Gébelin A, Mulch A, Teyssier C, et al . The Miocene elevation of Mount Everest[J]. Geology, 2014, doi:10.1130/G34331.1.
[19]
Polissar P J, Freeman K H, Rowley D B, et al . Paleoaltimetry of the Tibetan Plateau from D/H ratios of lipid biomarkers[J]. Earth and Plant Science Letters, 2009, 287:64-76.
[20]
Jia G D, Bai Y, Ma Y J, et al . Paleoelevation of Tibetan Lunpola Basin in the Oligocene-Miocene transition estimated from leaf wax lipid dual isotopes[J]. Global and Planetary Change, 2015, 126: 14-22.
[21]
Sun J M, Xu Q H, Liu W M, et al . Palynological evidence for the latest Oligocene-early Miocene Paleoelevation estimate in the Lunpola Basin, central Tibet[J]. Paleogeography, Palaoeclimatology, Palaeoecology, 2014, 399:21-30.
[22]
Zhou Z K, Yang Q S, Xia K.Fossils of Quercus sect. Heterobalanus can help explain the uplift of the Himalayas[J].Chinese Science Bulletin, 2007, 52(2): 238-247.
[23]
Spicer R A, Harris N B W, Widdowson M, et al . Constant elevation of southern Tibet over the past 15Ma million years[J]. Nature, 2003, 421:622-624.
[24]
Wang Y, Xu Y F, Khawaja S, et al . Diet and environment of a mid-Pliocene fauna from southwestern Himalaya: Paleopelevation implications[J]. Earth and Planetary Science Letters, 2013,376:43-53.
[25]
Wang Y, Wang X M, Xu Y F, et al . Stable isotopes in fossil mammals, fish and shells from Kunlun Pass Basin, Tibetan Plateau: Paleo-climatic and paleo-elevation implications[J]. Earth and Plant Science Letters, 2008, 270:73-85.
[26]
Wang Y, Deng T, Biasatti D. Ancient diets indicates ignificant uplift of southern Tibet after ca.7 Ma[J]. Geology, 2006, 34:309-312.
[27]
DeCelles P G, Kapp P, Quade J, et al . Oligocene-Miocene Kailas Basin, southwestern Tibet: Record of postcollisional upper-plate extension in the Indus-Yarlung suture zone[J]. Geological Society of America Bulletin, 2011, 123:1 337-1 362.
[28]
Deng T, Wang S Q, Xie G P, et al . A mannalian fossil from the Dingqing Formation in the Lunpola Basin, northern Tibet, and its relevance to age and paleo-altimetry[J]. Chinese Science Bulletin, 2012, 57(2/3): 261-269.
[29]
Ambach W, Dansgaard W, Eisner H, et al . The altitude effect on the isotopic composition of precipitation and glacier ice in the Alps[J]. Tellus, 1968, 20:595-600.
[30]
Siegenthaler U, Oeschger H. Correlation of 18 O in precipitation with temperature and altitude[J]. Nature, 1980, 285:314-317.
[31]
Gonfiantini R, Roche M A, Olivry J C, et al . The altitude effect on the isotopic composition of tropical rains[J]. Chemical Geology, 2001, 181:147-67.
[32]
Bershaw J, Penny S M, Garzione C N. Stable isotopes of modern water across the Himalaya and eastern Tibetan Plateau: Implications for estimates of paleoelevation and paleoclimate[J]. Journal of Geophysical Research, 2012, 117: 1-18.
[33]
Rowley D B. Stable isotope-based paleoaltimetry: Theory and validation[J]. Reviews in Mineralogy and Geochemistry, 2007, 66:23-52.
[34]
Quade J, Garzione C, Eiler J. Paleoelevation reconstruction using pedogenic carbonates[J]. Reviews in Mineralogy and Geochemistry, 2007, 66:53-87.
[35]
Rowley D B, Pierrehumbert R T, Currie B S. A new approach to stable isotope-based paleoaltimetry: Implications for paleoaltimetry and paleohyp-sometry of the High Himalaya since the Late Miocene[J]. Earth and Plant Science Letters, 2001, 188:253-268.
[36]
Quade J, Breecker D O, Daeron M, et al . The paleoaltimetry of Tibet: An isotopic perspective[J].Merica Journal of Science, 2011, 311:77-115.
[37]
Zachos J C, Stott L D, Lohmann K C. Evolution of early Cenozoic marine temperatures[J].Paleoocenaography, 1994, 9(2):353-387.
[38]
Lear C H, Elderfield H, Wilson P A. Cenozoic deep-sea temperatures and global ice volumesfrom Mg/Ca in benthic foraminiferal calcite[J]. Science, 2000, 287:269-272.
[39]
Poage M A, Chamberlain C P. Empirial relationship between elevation and the stable isotope composition of precipitation: Considerations for studies of paleoelevation change[J]. America Journal of Science, 2001, 301(1): 1-15.
[40]
Hren M T,Bookhagen B, Blisniuk P M, et al . δ 18 O and δ D of streamwaters across the Himalaya and Tibetan Plateau: Implications for moisture sources and paleoelevation reconstructions[J]. Earth and Planetary Science Letters, 2009, 288:20-32.
[41]
Tian L, Masson-Delmotte V, Stievenard M, et al . Tibetan Plateau summer monsoon northward extent revealed by measurements of water stable isotopes[J]. Journal of Geophysical Research, 2001, 106(D22):28 081-28 088.
[42]
Zhang X P, Nakawo M, Yao T D, et al . Variations of stable isotopic compositions in precipitation on the Tibetan Plateau and its adjacent regions[J]. Science in China (Series D), 2002, 45(6):481-493.
[43]
Garzione C N, Dettman D L, Horton B K. Carbonate oxygen isotope paleoaltimetry: Evaluating the effect of diagenesis on paleoelevation estimates for the Tibetan[J]. Palaeography, Palaeoclimatology, Palaeoecology, 2004, 212:119-140.
[44]
Kim S T, O’Neil J R. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates[J]. Geochimica et Cosmochimica Acta, 1997, 61:3 461-3 475.
[45]
Friedman J I, O’Neil J R. Compilation of stable isotopefractionation factors of geochemical interest[M].Fleischer M, ed. Data of Geochemistry. Chapter K K:US Geological Survey Professional Paper, 1977.
[46]
Rozanski K, Sonntag C. Vertical distribution of deuterium in atmospheric watervapour[J]. Tellus, 1982, 34:135-41.
[47]
Jia G D, Wei K, Chen F J, et al . Soil n-alkane δD vs. altitude gradients along Mount Gongga, China[J]. Geochimica et Cosmochimica Acta, 2008, 72(21): 5 165-5 174.
[48]
Bai Y, Fang X M, Glexixener G, et al . Effect of precipitation regime on δD values of soil n-alkanes from elevation gradients-Implications for the study of plaeo-elevation[J]. Organic Geochemistry, 2011, 42:838-845.
[49]
Schimmelmann A, Sessions A L, Mastalerz M. Hydrogen isotope (D/H)composition of organic matter during diagenesis and thermal maturation[J]. Annual Review of Earth and Planet Science, 2006, 34:501-533.
[50]
Zhang Kexin, Wang Guocan, Chen Fenning, et al . Coulping between the uplift of Qinghai-Tibet Plateau and distribution of basins of Paleogene-Neogene[J]. Earth Science—Journal of China University of Geosciences, 2007, 32(5):583-597.[张克信,王国灿,陈奋宁,等.青藏高原古近纪—新近纪隆升与沉积盆地分布耦合[J].地球科学——中国地质大学学报,2007, 32(5):583-597.]
[51]
Polissar P J, Freeman K H. Effects of aridity and vegetation on plant-wax δD in modern lake sediments[J]. Geochimica et Cosmochimica Acta, 2010, 74:5 785-5 797.
[52]
Hou J Z, D’Andrea W J, Huang Y S. Cansedimentary leaf waxes record D/H ratios of continentalprecipitation? Field, model, and experimental assessments[J]. Geochimica et Cosmochimica Acta, 2008, 72:3 503-3 517.
[53]
Saito K, Yasunari T, Takata K. Relative roles of large-scale orography and landsurface processes in the global hydroclimate. Part II: Impacts on hydroclimate over Eurasia[J]. Journal of Hydrometeorol, 2006, 7:642-659.
[54]
Liu X, Yin Z Y. Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau[J]. Palaeography, Palaeoclimatology, Palaeoecology, 2002,183:223-245.
[55]
Ramstein G, Fluteau F, Besse J, et al . Effect of orogeny, plate motionand land-sea distribution on Eurasion climate change over the past 30 millionyears[J]. Nature, 1997, 386:788-795.
[56]
Smith F A, Freeman K H. Influence of physiology and climate on δD of leaf waxn-alkanes from C3 and C4 grasses[J]. Geochimica et Cosmochimica Acta, 2006, 70:1 172-1 187.
[57]
Mosbrugger V, Utescher T. The coexistence approach: A method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 134: 61-86.
[58]
DettmanD L,Reische A K, Lohmann K C. Controls on the stable isotope composition of seasonal growth bands in aragonitic fresh-water bivalves (unionidae)[J]. Geochimica et Cosmochimica Acta, 1999, 63:1 049-1 057.
[59]
Lu H Y, Wu N Q, Gu Z Y, et al . Distribution of carbon isotope composition of modern soils on the Qinhai-Tibetan Plateau[J]. Biogeochemistry, 2004, 70:275-299.
[60]
Bowen G J, Wilkinson B. Spatial distribution of delta O-18 in meteoric precipitation[J]. Geology, 2002, 30:315-318.
[61]
Morrill C, Koch P L. Elevation or alteration? Evaluation of isotopic constraints on paleoaltitudes surrounding the EoceneGreen River Basin[J]. Geology, 2002, 30:151-154.
[62]
Leng M J, Marshall J D. Palaeoclimate interpretation of stable isotope data from lake sediment archives[J]. Quaternary Science Reviews, 2004, 23:811-831.
[63]
Leier A, Quade J, DeCelles P, et al . Stable isotopic results from paleosol carbonate in south Asia: Paleoenvironmental reconstructions and selective alteration[J]. Earth and Planetary Science Letters, 2009, 279: 242-254.
[64]
Talbot M R. A review of the paleohydrological interpretation of carbon and oxygen isotopic-ratios in primary lacustrine carbonates[J]. Chemical Geology, 1990, 80:261-279.
[65]
Dettman D L, Fang X M, Garzione C N, et al . Uplift-drivenclimatechange at 12 Ma: Along δ 18 O record from the nemargin of the Tibetan Plateau[J]. Earth and Planetary Science Letters, 2003, 214:267-277.
[66]
Wu Zhenhan, Zhao Xun, Ye Peisheng, et al . Paleo-elevation of the Tibetan Plateau inferred from Carbon and Oxygen Isotopes of Lacustrine Deposits[J]. Acta Geologica Sinica,2007, 81(9): 1 277-1 288.[吴珍汉,赵逊,叶培盛,等. 根据湖相沉积碳氧同位素估算青藏高原古海拔高度[J]. 地质学报,2007, 81(9):1 277-1 288.]
[67]
Ghosh P, Adkins J, Affek H, et al . 13 C- 18 O bonds in carbonate minerals: A new kind of paleothermometer[J]. Geochimica et Cosmochimica Acta, 2006, 70:1 439-1 456.
[68]
Chosh P, Garzione C N, Eiler J M. Rapid uplift of the Altipiano revealed through 13 C- 18 O bonds in paleosol carbonates[J]. Science, 2006, 311: 511-515.
[69]
Quade J, Eiler J, Daëron M, et al . The clumped isotope geothermometer in soil and paleosol carbonate[J]. Geochimica et Cosmochimica Acta, 2013, 105:92-107.
[70]
Araguas L, Froehlich K, Rozanski K. Deuterium and oxygen-18 isotope composition of precipitationand atmospheric moisture[J]. Hydrological Processes, 2000,14:1 341-1 355.
[71]
Kouwenberg L R, Kurschner W M, McElwain J C. Stomatal frequency change over altitudinal gradients: Prospects for paleoaltimetry[J]. Reviews in Mineralogy and Geochemistry, 2007, 66: 215-241.
[72]
McElwain J C.Climate-independent paleoaltimetry using stomatal density in fossil leaves as a proxy for CO 2 partial pressure[J].Geology,2004, 32:1 017-1 020.
[73]
Wang Chengshan, Dai Jin’gen, Liu Zhifei, et al . The uplift history of the Tibetan Plateau and Himalaya and its study approches and techniques: A review[J]. Earth Science Frontiers, 2009, 16(3):1-30.[王成善,戴紧根,刘志飞,等.西藏高原与喜马拉雅的隆升历史和研究方法:回顾与进展[J].地学前缘,2009, 16(3):1-30.]
[74]
Mosbrugger V, Utescher T. The coexistence approach—A method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 134: 61-86.
[75]
Song X Y, Spicer R A, Yang J, et al . Pollen evidence for an Eocene to Miocene elevation of central southern Tibet predating the rise of the High Himalaya[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 297: 159-168.
[76]
Wolfe J A, Forest C, EMolnar P. Paleobotanical evidence of Eocene and Oligocene paleoaltitudesin midlatitude western North America[J]. Geological Society of America Bulletin, 1988, 110:664-678.
[77]
Wang Y, Kromhout E, Zhang C F,et al. Stable isotopic variations in modern herbivore tooth enamel, plants and water on the Tibetan Plateau: Implications for paleoclimate and paleoelevation reconstructions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 260:359-374.
[78]
Turner S, Arnaud N, Liu J, et al . Post-collision shonitic volcanism on the Tibetan Plateau: Implications for convectivethinning of the lithosphere and the source of ocean island basalts[J]. Journal of Petrology, 1996, 37(1): 45-71.
[79]
Turner S, Hawkesworth C, Liu J, et al . Timing of Tibetan uplift const rained by analysis of volcanic rocks[J]. Nature, 1993, 364: 50-54.
[80]
Harrison T, Copeland P, Kidd W, et al . Raising Tibet[J]. Science, 1992, 255:1 663-1 670.
[81]
Harrison T M, Copeland P, Kidd W S F, et al . Activation of the Nyainquentanghla shear zone: Implications for uplift of the southern Tibetan Plateau[J]. Tectonics, 1995, 14: 658-676.
[82]
Coleman M, Hodges K. Evidence for Tibetan Plateau uplift before 14 Myr ago from a newminimum age for east-west extension[J]. Nature, 1995, 374:49-52.
[83]
Blisnuik P M, Hacker B R, Glodny J, et al . Extension in central Tibet since at least 13.5 Myr[J]. Nature, 2001, 412:628-632.
[84]
Brook E J, Brown E T, Kurz M D. Constraints on age, erosion, and uplift of Neogene glacial deposits in the Transantarctic Mountains determined f rom in situ cosmogenic 10 Be and 26 Al[J]. Geology, 1995, 23(12): 1 063-1 066.
[85]
Sahagian D L, Maus J E. Basalt vesicularity as a measure of atmospheric-pressure and palaeoelevation[J]. Nature, 1994, 372(6 505):449-451.
[86]
Sahagian D, Proussevitch A, Carlson W. Analysis of vesicular basaltsand lava emplacement processes for application as a paleobarometer/paleoaltimeter[J]. Journal of Geology, 2002, 110(6): 671-685.
[87]
Sahagian D, Proussevitch A. Paleoelevation measurement on the basis of vesicular basalts, Paleoaltimetry: Geochemical and Thermodynamic approaches[J]. Reviews in Mineralogy and Geochemistry, 2007,66:195-213.
[88]
Dai Jin’gen, Ding Wenjun, Wang Chengshan. Vesicular basalt paleoaltimeter: Principles, methods and its applications[J]. Geological Bulletin of China, 2010, 29(2/3):268-277.[戴紧根,丁文君,王成善.气孔玄武岩古高程计:原理、方法及应用[J].地质通报,2010, 29(2/3):268-277.]
[89]
Li Jijun, Fang Xiaomin, Song Chunhui, et al . Late Miocene-Quaternary rapid stepwise uplift of the NE Tibetan Plateau and its effects on climatic and environmental changes[J]. Quaternary Research, 2014, 81(3): 400-423.
[90]
Xin Huijuan, He Yuanqing, Zhang Tao, et al . The features of climate variation and glacier response in Mt. Yulong, Southeastern Tibetan Plateau[J]. Advances in Earth Science, 2013, 28(11): 1 257-1 268.[辛慧娟,何元庆,张涛,等. 青藏高原东南缘丽江玉龙雪山气候变化特征及其对冰川变化的影响[J]. 地球科学进展,2013,28(11):1 257-1 268.]
[91]
Ma Yaoming, Hu Zeyong, Tian Lide, et al . Study progresses of the Tibet Plateau climate system change and mechanism of its impact on East Asia[J]. Advances in Earth Science, 2014, 29(2): 207-215.[马耀明,胡泽勇,田立德,等.青藏高原气候系统变化及其对东亚区域的影响与机制研究进展[J]. 地球科学进展,2014,29(2):207-215.]