Scanlan D J, Ostrowski M, Mazard S, et al. Ecological genomics of marine picocyanobacteria[J]. Microbiology and Molecular Biology Reviews, 2009, 73(2): 249-299.
[2]
Scanlan D J. Marine picocyanobacteria[C]∥Whitton B A, ed.Ecology of Cyanobacteria II. Netherlands: Springer, 2012.
[3]
Paerl H W. Marine plankton[C]∥Whitton B A, ed.Ecology of Cyanobacteria II. Netherlands: Springer, 2012.
[4]
Bibby T, Mary I, Nield J, et al. Low-light-adapted Prochlorococcus species possess specific antennae for each photosystem[J]. Nature, 2003, 424(6 952): 1 051-1 054.
[5]
Huang S, Wilhelm S W, Harvey H R, et al. Novel lineages of Prochlorococcus and Synechococcus in the global oceans[J]. The ISME Journal, 2012, 6(2): 285-297.
[6]
Jing H, Zhang R, Pointing S B, et al. Genetic diversity and temporal variation of the marine Synechococcus community in the subtropical coastal waters of Hong Kong[J]. Canadian Journal of Microbiology, 2009, 55(3): 311-318.
[7]
Clark J R, Lenton T M, Williams H T, et al. Environmental selection and resource allocation determine spatial patterns in picophytoplankton cell size[J]. Limnology and Oceanography, 2013, 58(3): 1 008-1 022.
[8]
Partensky F, Garczarek L. Prochlorococcus: Advantages and limits of minimalism[J]. Annual Review of Marine Science, 2010, 2: 305-331.
[9]
West N J, Lebaron P, Strutton P G, et al. A novel clade of Prochlorococcus found in high nutrient low chlorophyll waters in the South and Equatorial Pacific Ocean[J]. The ISME Journal, 2011, 5(6): 933-944.
[10]
Picot J, Guerin C L, Le Van Kim C, et al. Flow cytometry: Retrospective, fundamentals and recent instrumentation[J]. Cytotechnology, 2012, 64(2): 109-130.
[11]
Marie D, Shi X L, Rigaut-Jalabert F, et al. Use of flow cytometric sorting to better assess the diversity of small photosynthetic eukaryotes in the English Channel[J]. FEMS Microbiology Ecology, 2010, 72(2): 165-178.
[12]
Liu H, Jing H, Wong T H, et al. Co-occurrence of phycocyanin- and phycoerythrin-rich Synechococcus in subtropical estuarine and coastal waters of Hong Kong[J]. Environmental Microbiology Reports, 2014, 6(1): 90-99.
[13]
Giovannoni S, Stingl U. The importance of culturing bacterioplankton in the ‘omics’ age[J]. Nature Reviews Microbiology, 2007, 5(10): 820-826.
[14]
Rappé M S. Stabilizing the foundation of the house that ′omics builds: The evolving value of cultured isolates to marine microbiology[J]. Current Opinion in Microbiology,2013, 16(5): 618-624.
[15]
Mazard S, Ostrowski M, Partensky F, et al. Multi-locus sequence analysis, taxonomic resolution and biogeography of marine Synechococcus[J]. Environmental Microbiology, 2012, 14(2): 372-386.
[16]
Biller S J, Berube P M, Berta-Thompson J W, et al. Genomes of diverse isolates of the marine cyanobacterium Prochlorococcus[J]. Scientific Data,2014,1: 140034.
[17]
Rodrigue S, Malmstrom R R, Berlin A M, et al. Whole genome amplification and de novo assembly of single bacterial cells[J]. PloS ONE, 2009, 4(9): e6864.
[18]
Yilmaz S, Singh A K. Single cell genome sequencing[J]. Current Opinion in Biotechnology, 2012, 23(3): 437-443.
[19]
Kashtan N, Roggensack S E, Rodrigue S, et al. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus[J]. Science,2014,344(6 182): 416-420.
[20]
Kelly L, Huang K H, Ding H, et al. ProPortal: A resource for integrated systems biology of Prochlorococcus and its phage[J]. Nucleic Acids Research, 2012,(40): D632-D640.
[21]
Martinez A, Tyson G W, DeLong E F. Widespread known and novel phosphonate utilization pathways in marine bacteria revealed by functional screening and metagenomic analyses[J]. Environmental Microbiology,2010, 12(1): 222-238.
[22]
Malmstrom R R, Rodrigue S, Huang K H, et al. Ecology of uncultured Prochlorococcus clades revealed through single-cell genomics and biogeographic analysis[J]. The ISME Journal, 2013, 7(1): 184-198.
[23]
Morales S E, Holben W E. Linking bacterial identities and ecosystem processes: Can ‘omic’ analyses be more than the sum of their parts?[J]. FEMS Microbiology Ecology, 2011, 75(1): 2-16.
[24]
Biller S J, Berube P M, Lindell D, et al. Prochlorococcus: The structure and function of collective diversity[J]. Nature Reviews Microbiology, 2015, 13(1): 13-27.
[25]
Jiao N, Luo T, Zhang R, et al. Presence of Prochlorococcus in the aphotic waters of the western Pacific Ocean[J]. Biogeosciences Discussions, 2013, 10(6): 9 345-9 371.
[26]
Cottrell M T, Kirchman D L. Photoheterotrophic microbes in the Arctic Ocean in summer and winter[J]. Applied and Environmental Microbiology, 2009, 75(15): 4 958-4 966.
[27]
Malmstrom R R, Coe A, Kettler G C, et al. Temporal dynamics of Prochlorococcus ecotypes in the Atlantic and Pacific oceans[J]. The ISME Journal, 2010, 4(10): 1 252-1 264.
[28]
Ahlgren N A, Rocap G. Diversity and distribution of marine Synechococcus: Multiple gene phylogenies for consensus classification and development of qPCR assays for sensitive measurement of clades in the ocean[J]. Frontiers in Microbiology, 2012, 3: 213.
[29]
Pittera J, Humily F, Thorel M, et al. Connecting thermal physiology and latitudinal niche partitioning in marine Synechococcus[J]. The ISME Journal, 2014, 8(6): 1 221-1 236.
[30]
Zwirglmaier K, Jardillier L, Ostrowski M, et al. Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes[J]. Environmental Microbiology,2008,10(1): 147-161.
[31]
Shibl A A, Thompson L R, Ngugi D K, et al. Distribution and diversity of Prochlorococcus ecotypes in the Red Sea[J]. FEMS Microbiology Letters, 2014, 356(1): 118-126.
[32]
del Carmen Muoz-Marín M, Luque I, Zubkov M V, et al. Prochlorococcus can use the Pro1404 transporter to take up glucose at nanomolar concentrations in the Atlantic Ocean[J]. Proceedings of the National Academy of Sciences, 2013, 110(21): 8 597-8 602.
[33]
Engene N, Gunasekera S P, Gerwick W H, et al. Phylogenetic inferences reveal a large extent of novel biodiversity in chemically rich tropical marine cyanobacteria[J]. Applied and Environmental Microbiology, 2013, 79(6): 1 882-1 888.
[34]
Villeneuve A, Laurent D, Chinain M, et al. Molecular characterization of the diversity and potential toxicity of cyanobacterial mats in two tropical lagoons in the South Pacific Ocean[J]. Journal of Phycology, 2012, 48(2): 275-284.
[35]
Paerl R W, Turk K A, Beinart R A, et al. Seasonal change in the abundance of Synechococcus and multiple distinct phylotypes in Monterey Bay determined by rbcL and narB quantitative PCR[J]. Environmental Microbiology,2012, 14(3): 580-593.
[36]
Zheng Q, Jiao N, Zhang R, et al. The evolutionary divergence of psbA gene in Synechococcus and their Myoviruses in the East China Sea[J]. PloS ONE, 2014, 9(1): e86644.
[37]
Gutiérrez-Rodriguez A, Slack G, Daniels E F, et al. Fine spatial structure of genetically distinct picocyanobacterial populations across environmental gradients in the Costa Rica Dome[J]. Limnology and Oceanography, 2014, 59(3): 705-723.
[38]
Perez-Cenci M, Caló G F, Silva R I, et al. The first molecular characterization of picocyanobacteria from the Argentine Sea[J]. Journal of Marine Biology, 2014,doi:10.1155/2014/237628.
[39]
Najdek M, Paliaga P, Šilovi T, et al. Picoplankton community structure before, during and after convection event in the offshore waters of the Southern Adriatic Sea[J]. Biogeosciences, 2014, 11(10): 2 645-2 659.
[40]
Jing H, Liu H. Phylogenetic composition of Prochlorococcus and Synechococcus in cold eddies of the South China Sea[J]. Aquatic Microbial Ecology, 2012, 65(3): 207-219.
[41]
Choi D H, Noh J H, Shim J. Seasonal changes in picocyanobacterial diversity as revealed by pyrosequencing in temperate waters of the East China Sea and the East Sea[J]. Aquatic Microbial Ecology, 2013, 71(1): 75-90.
[42]
Davey M, Tarran G A, Mills M M, et al. Nutrient limitation of picophytoplankton photosynthesis and growth in the tropical North Atlantic[J]. Limnology and Oceanography, 2008, 53: 1 722-1 733.
[43]
Mackey K R, Rivlin T, Grossman A R, et al. Picophytoplankton responses to changing nutrient and light regimes during a bloom[J]. Marine Biology, 2009, 156(8): 1 531-1 546.
[44]
Cerezo M I, Agustí S. PAHs reduce DNA synthesis and delay cell division in the widespread primary producer Prochlorococcus[J]. Environmental Pollution, 2015, 196: 147-155.
[45]
Zhang Wuchang, Zhao Yuan, Zhao Li, et al. Review of marine microzooplankton grazing on Synechococcus[J]. Marine Science Bulletin, 2014, 33(6): 611-623. [张武昌,赵苑,赵丽,等.海洋微型浮游动物摄食聚球蓝细菌研究综述[J].海洋通报,2014, 33(6): 611-623.]
[46]
Coelho S M, Simon N, Ahmed S, et al. Ecological and evolutionary genomics of marine photosynthetic organisms[J]. Molecular Ecology, 2013, 22(3): 867-907.
[47]
Six C, Thomas J C, Garczarek L, et al. Diversity and evolution of phycobilisomes in marine Synechococcus spp.: A comparative genomics study[J]. Genome Biology,2007, 8(12): R259.
[48]
Mella-Flores D, Six C, Ratin M, et al. Prochlorococcus and Synechococcus have evolved different adaptive mechanisms to cope with light and UV stress[J]. Frontiers in Microbiology, 2012, 3: 285.
[49]
Kettler G C, Martiny A C, Huang K, et al. Patterns and implications of gene gain and loss in the evolution of Prochlorococcus[J]. PLoS Genetics, 2007, 3(12): e231.
[50]
Sun Z, Blanchard J L. Strong genome-wide selection early in the evolution of Prochlorococcus resulted in a reduced genome through the loss of a large number of small effect genes[J]. PloS ONE, 2014, 9(3): e88837,doi:10.1371/journal.pone.0088837.
[51]
Jin Jie, Liu Sumei. Advances in studies of phosphorus utilization by marine phytoplankton[J]. Advances in Earth Science, 2013, 28(2): 253-261. [金杰,刘素美.海洋浮游植物对磷的响应研究进展[J].地球科学进展,2013, 28(2): 253-261.]
[52]
Feingersch R, Philosof A, Mejuch T, et al. Potential for phosphite and phosphonate utilization by Prochlorococcus[J]. The ISME Journal, 2012, 6(4): 827-834.
[53]
Krumhardt K M, Callnan K, Roache-Johnson K, et al. Effects of phosphorus starvation versus limitation on the marine cyanobacterium Prochlorococcus MED4 I: Uptake physiology[J]. Environmental Microbiology,2013,15(7): 2 114-2 128.
[54]
Ohashi Y, Shi W, Takatani N, et al. Regulation of nitrate assimilation in cyanobacteria[J]. Journal of Experimental Botany, 2011, 62(4): 1 411-1 424.
[55]
Kamennaya N A, Post A F. Distribution and expression of the cyanate acquisition potential among cyanobacterial populations in oligotrophic marine waters[J]. Journal Limnology and Oceanography, 2013, 58(6): 1 959-1 971.
[56]
Stuart R K, Brahamsha B, Busby K, et al. Genomic island genes in a coastal marine Synechococcus strain confer enhanced tolerance to copper and oxidative stress[J]. The ISME Journal, 2013, 7(6): 1 139-1 149.
[57]
Tetu S G, Johnson D A, Varkey D, et al. Impact of DNA damaging agents on genome-wide transcriptional profiles in two marine Synechococcus species[J]. Frontiers in Microbiology, 2013, 4: 232.
[58]
Ting C S, Rocap G, King J, et al. Cyanobacterial photosynthesis in the oceans: The origins and significance of divergent light-harvesting strategies[J]. Trends in Microbiology, 2002, 10(3): 134-142.
[59]
Dishon G, Dubinsky Z, Caras T, et al. Optical habitats of ultraphytoplankton groups in the Gulf of Eilat (Aqaba), Northern Red Sea[J].International Journal of Remote Sensing, 2012, 33(9): 2 683-2 705.
[60]
Flombaum P, Gallegos J L, Gordillo R A, et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus[J]. Proceedings of the National Academy of Sciences, 2013, 110(24): 9 824-9 829.
[61]
Chen B, Wang L, Song S, et al. Comparisons of picophytoplankton abundance, size, and fluorescence between summer and winter in northern South China Sea[J]. Continental Shelf Research, 2011, 31(14): 1 527-1 540.
[62]
Buitenhuis E T, Li W K W, Vaulot D, et al. Picophytoplankton biomass distribution in the global ocean[J]. Earth System Science Data, 2012, 4: 37-46.
[63]
Cai Haiyuan, Jiao Nianzhi. Recent progress in Cyanophage[J]. Advances in Earth Science, 2010, 25(10): 1 031-1 039. [蔡海元,焦念志.聚球藻病毒研究进展[J].地球科学进展,2010,25(10): 1 031-1 039.]
[64]
Jiao Nianzhi, Zhang Chuanlun, Xie Shucheng, et al. To decipher the ocean carbon sink through interdisciplinarity and the integration of the past and present[J]. Advances in Earth Science, 2014, 29(11): 1 294-1 297. [焦念志,张传伦,谢树成,等.古今结合论碳汇、见微知著识海洋[J].地球科学进展,2014,29(11): 1 294-1 297.]
[65]
Jiao Nianzhi, Zhang Chuanlun, Li Chao, et al. Controlling mechanisms and climate effects of microbial carbon pump in the ocean[J]. Science in China (Series D),2013, 43(1): 1-18. [焦念志,张传伦,李超,等.海洋微型生物碳泵储碳机制及气候效应[J].中国科学:D辑,2013, 43(1): 1-18.]
[66]
Martiny A C, Kathuria S, Berube P M. Widespread metabolic potential for nitrite and nitrate assimilation among Prochlorococcus ecotypes[J]. Proceedings of the National Academy of Sciences, 2009, 106(26): 10 787-10 792.
[67]
Coleman M L, Chisholm S W. Ecosystem-specific selection pressures revealed through comparative population genomics[J]. Proceedings of the National Academy of Sciences, 2010, 107(43): 18 634-18 639.