全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
地理科学  2014 

吉林东部山地沼泽湿地土壤碳、氮、磷含量及其生态化学计量学特征

, PP. 994-1001

Keywords: 土壤有机碳,全氮,全磷,山地沼泽,生态化学计量学特征

Full-Text   Cite this paper   Add to My Lib

Abstract:

湿地土壤有机碳、氮和磷含量变化显著影响着湿地生态系统的生产力。为阐明吉林东部山地沼泽湿地土壤养分的空间分布特征,以吉林省敦化市4种典型山地沼泽湿地落叶松-苔草湿地(T1)、莎草湿地(T2)、小叶章-甜茅湿地(T3)和沼泽化草甸湿地(T4)为研究对象,研究了土壤有机碳、全氮和全磷含量及其化学计量比的空间分布特征及影响因素。结果表明4种山地沼泽湿地类型土壤有机碳、全氮、全磷含量均值分别为343.11mg/g、28.03mg/g和4.00mg/g,变异系数为有机碳(9.26%)<全氮(16.52%)<全磷(48.64%)。在0~40cm土层内,T1、T2和T3土壤有机碳、全氮、全磷含量随土壤深度的增加呈先增加后减少的趋势,在10~20cm土层出现累积峰;T4土壤有机碳、全氮、全磷含量随土壤深度的增加而减少。土壤有机碳、全氮含量的变化趋势为T1

References

[1]  Lal R.Soil carbon sequestration impacts on global climate change and food security[J].Science,2004,304(5677):1623-1627.
[2]  Stevenson F J,Cole M A.Cycles of soil carbon, nitrogen, phosphorus, sulfur, micronutrients[M].USA: John Wiley& Sons Inc, 1999.
[3]  Schipper L A,Percival H J,Sparling G P. An approach for estimating when soils will reach maximum nitrogen storage[J]. Soil use and Management,2004,20(3):281-286.
[4]  Han X G,Li L H,Huang J H.An introduction to biogeochemistry[M].Beijing: Higher Education Press.1999.
[5]  Chapin F S III,Matson P P A,Mooney H A.Principles of terrestrial ecosystem ecology[M].New York, NY, USA: Springer Verlag, 2002.
[6]  肖辉林.气候变化与土壤有机质的关系[J].土壤与环境,1999,8 (4):300~304.
[7]  Elser J J,Bracken M E S,Cleland E E,et al.Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J].Ecology Letters, 2007,10(12):1135-1142.
[8]  王绍强,于贵瑞.生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报,2008,28(8): 3937~3943.
[9]  Verhoeven J T A,Arheimer B,Yin C Q,et al.Regional and global concerns over wetlands and water quality[J].Trends in Ecology and Evolution,2006,21(2):96-103.
[10]  白军红,邓伟,朱颜明,等.霍林河流域湿地碳氮空间分布特征 及生态效应[J].应用生态学报,2003,14(9):1494~1498.
[11]  Bulatnikova I V,Makarov M I,Malysheva T I,et al.Organic nitrogen mineralization and nitrification in meadow alpine soils of the northeastern Caucasus[J].Moscow University Soil Science Bulletin,2003,58(2):9-15.
[12]  Mitsch W J,Gosselin J G.Wetlands[M].New York:Van Nostrand Reinhold Company Inc.2000.
[13]  Davidson E A, Trumbore S E, Amundson R.Biogeochemistry: soil warming and organic carbon content[J].Nature,2000,408: 778-790.
[14]  Grace J,Rayment M.Respiration in the balance[J].Nature,2000, 404:819-820.
[15]  Hobbie S E,Nadelhoffer K J,Hgberg P.A synthesis:The role of nutrients as constraints on carbon balances in boreal and arctic regions[J].Plant and Soil,2002,242(1):163-170.
[16]  周昆叔,陈硕民,叶永英,等.吉林省敦化地区沼泽的调查及其 花粉分析[J].地质科学,1977,2(2):129~139.
[17]  赵魁义.中国沼泽志[M].科学出版社,1999.
[18]  赵红艳,周道玮.吉林省敦化地区晚全新世泥炭沼泽孢粉组合 特征及古植被[J].应用生态学报,2006,17(2):197~200.
[19]  赵红艳,冷雪天,王升忠.长白山地泥炭分布、沉积速率与全新 世气候变化[J].山地学报,2002,20(5):513~518.
[20]  鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版 社,1999.
[21]  中国科学院土壤研究所.土壤化学分析[M].1987.上海:上海科 学技术出版社.
[22]  Chen X W,Li B L.Change in soil carbon and nutrient storage after human disturbance of a primary Korean pine forest in Northeast China[J].Forest Ecology and Management.2003,186: 197-206.
[23]  Jobbagy E G,Jackson R B.The vertical distribution of soil organic carbon and it's relation to climate and vegetation[J].Ecol Appl,2002,10(2):423-436.
[24]  彭佩钦,张文菊,童成立,等.洞庭湖典型湿地土壤碳、氮和微生 物碳、氮及其垂直分布[J].水土保持学报,2005,19(1):49~53.
[25]  张文菊,吴金水,肖和艾,等.三江平原典型湿地剖面有机碳分 布特征与积累现状[J].地球科学进展,2004,19(4): 558~563.
[26]  Whigham D F,Bayley S E.Nutrient Dynamics in FreshwaterWetlands[ A],In:Wetland Functions and Values:The State of Our Undstanding[ C].P.E.Greenson,J.R.Clark, and J.E.Clark,eds., AmericanWater Resoures Assoc.,Minneapoils,Minn.1979.468-478.
[27]  白军红,邓伟,朱颜明,等.霍林河流域湿地碳氮空间分布特征 及生态效应[J].应用生态学报,2003,14(9):1494~1498.
[28]  石福臣,李瑞利,王绍强.三江平原典型湿地土壤剖面有机碳及 全氮分布与积累特征[J].应用生态学报,2007,18(7):1425~1431.
[29]  李丽,高俊琴,雷光春,等.若尔盖不同地下水位泥炭湿地土壤有 机碳和全氮分布规律[J].生态学杂志,2011,30(11):2449~2455.
[30]  刘世全,高丽丽,蒲玉琳,等.西藏土壤有机质和氮素状况及其 影响因素分析[J].水土保持学报,2004,18(6):54~57.
[31]  白军红,邓伟,张玉霞.莫莫格湿地土壤氮磷空间分布规律研 究[J].水土保持学报,2001,15(4):79~81.
[32]  Paul E A.Nitrogen Cycling in Terrestrial Ecosystems[M].In: Nriagu JO,ed.Environmental Biogeochemistry.Ann Arbor Science. Michigan:Ann Arbor.1976.
[33]  白军红,邓伟,王庆改,等.内陆盐沼湿地土壤碳氮磷剖面分 布的季节动态特征[J].湖泊科学,2007,19(5):599~603.
[34]  刘吉平,吕宪国,杨青,等.三江平原环型湿地土壤养分的空间 分布规律[J].土壤学报,2006,43(2):248~254.
[35]  廖利平,高洪,汪思龙,等.外加氮源对杉木叶凋落物分解及土 壤养分淋失的影响[J].植物生态学报,2000,24(1):34~39.
[36]  王维奇,仝川,曾从盛.不同质地湿地土壤碳、氮、磷计量学及 厌氧碳分解特征[J].中国环境科学,2010,30(10):1369~1374.
[37]  刘兴诏,周国逸,张德强,等.南亚热带森林不同演替阶段植物 与土壤中N、P 的化学计量学特征[J].植物生态学报,2010,34 (1):64~71.
[38]  Hook P B,Burke I C,Lauenroth W K.Heterogeneity of soil and plant N and C associated with individual plants and openings in North American short grass steppe[J].Plant Soil,1991,138(2): 247-256.
[39]  Tanner C C,Eugenio J D,McBride G B, et al.Effect of water level fluctuation on nitrogen removal from constructed wetland mesocosms[J].Ecological Engineering,1999,12(1):67-92.
[40]  Agren G I.Stoichiometry and nutrition of plant growth in nature communities[J].Annu.Rev. Ecol.Syst,2008,39:153-170.
[41]  赵光影,刘景双,张雪萍,等.CO2浓度升高对三江平原湿地土壤 碳氮含量的影响[J].水土保持通报,2011,31(2):6~9.
[42]  孔范龙,郗敏,吕宪国,等.三江平原环型湿地土壤溶解性有机 碳的时空变化特征[J].土壤学报,2013,50(4):847~852.
[43]  王维奇,王纯,曾从盛,等.闽江河口不同河段芦苇湿地土壤碳氮 磷生态化学计量学特征[J].生态学报,2012,32(13):4087~4093.
[44]  仝川,贾瑞霞,王维奇,等.闽江口潮汐盐沼湿地土壤碳氮磷的 空间变化[J].地理研究,2010,29(7):1203~1212.
[45]  牟晓杰,孙志高,刘兴土.黄河口滨岸潮滩湿地土壤碳、氮的空 间分异特征[J].地理科学,2012,32(12):1521~1528.
[46]  王维奇,徐玲琳,曾从盛,等.河口湿地植物活体-枯落物-土壤的碳 氮磷生态化学计量特征[J].生态学报,2011,31(23):7119~7124.
[47]  甘华阳,张顺之,梁开,等.北部湾北部滨海湿地水体和表层 沉积物中营养元素分布与污染评价[J].湿地科学,2012,10(3): 285~298.
[48]  潘良浩,韦江铃,陈元松,等.茅尾海茳芏及沉积物有机碳、全氮、 全磷分布特征及季节动态[J].湿地科学,2012,10(4):467~473.
[49]  傅国斌,李克让.全球变暖与湿地生态系统的研究进展[J].地理 研究,2001,20(1): 120~128.
[50]  Lost S,Landgraf D,Makeschin F.Chemical soil properties of reclaimed marsh soil from Zhejiang Province P. R.China[J].Geoderma, 2007,142(3-4) :245-250.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133