Li J, Chen W. A rule-based method for mapping Canada’s wetlandsusing optical, radar and DEM data [J]. International Journalof Remote Sensing, 2005, 26(22): 5 051-5 069.
[2]
?zesmi S L, Bauer M E. Satellite remote sensing of wetlands[J].Wetlands Ecology and Management, 2002, 10(5): 381-402.
[3]
Stehman S V, Wickham J D, Smith J H, et al. Thematic accuracyof the 1992 National Land-Cover Data for the eastern UnitedStates: Statistical methodology and regional results [J]. RemoteSensing of Environment, 2003, 86: 500-516.
[4]
Zhao H T, Jamie M. Data Mining with SQL Server 2005 [M].New York, USA, JohnWiley & Sons, 2006:6-10.
[5]
Li S J, Wu H, et al. An effective feature selection method for hyperspectralimage classification based on genetic algorithm andsupport vector machine [J]. Knowledge-Based Systems, 2011,24(1): 40-48.
Thomas O, Debasmita M, Navin K C T, et al. An objective analysisof support vector machine based classification for remotesensing [J]. Math Geosci., 2008, 40: 409-424.
[14]
Mitsch W J, Gosselink J G. Wetlands [M]. 2nd ed. New York:Van Nostrand Reinhold, 1993: 507-527.
[15]
Fisher B, Turner R K, Morling P. Defining and classifying ecosystemservices for decision making [J]. Ecological Economics,2009, 68(3): 643-653.
[16]
Zhang S Q, Na X, Kong B,et al. Identifying landscape patterndynamics of Sanjiang plain marsh based on remote sensingtechniques [J].Wetlands, 2009, 29(1): 302-313.
[17]
Wickham J D, Stehman S V, Smith J H, et al. Thematic accuracyof the 1992 National Land-Cover Data for the western UnitedStates [J]. Remote Sensing of Environment, 2004, 91:452-468.
[18]
Wright C, Gallant A. Improved wetland remote sensing in YellowstoneNational Park using classification trees to combineTM imagery and ancillary environmental data [J]. RemoteSensing of Environment, 2007, 107(4): 582-605.
[19]
Su L H. Optimizing support vector machine learning forsemi-arid vegetation mapping by using clustering analysis [J].ISPRS Journal of Photogrammetry and Remote Sensing, 2009,64: 407-413.
[20]
Fogel D B. An introduction to simulated evolutionary optimization[J]. IEEE Transactions on Neural Networks, 1994, 5(1):3-14.
Melgani F, Bruzzone L. Classification of hyperspectral remotesensing images with support vector machines [J]. IEEE TransGeosci Remote Sens., 2004, 42(8): 1 778-1 790.
[24]
Foody G M, Mathur A. A relative evaluation of multiclass imageclassification by support vector machines [J]. IEEE TransGeosci Remote Sens, 2004, 6(42): 1335-1343.
[25]
Pal M, Mather P M. Support vector machines for classificationin remote sensing [J]. Int J Remote Sens, 2005, 3(26):1007-1011.
[26]
Chang C C, Lin C J. LIBSVM: A library for support vector machines[EB/OL]. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm, 2001.
[27]
Haralick R M, Shanmugam K, Dinstein I. Texture features forimage classification [J]. IEEE Transactions on Systems, Man,and Cybernetics, 1973, 3: 610-621.