全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
地理科学  2015 

基于时空窗口改进的时空加权回归分析——以湖北省黄石市住房价格为例

, PP. 615-621

Keywords: 时空窗口,时空加权回归(GTWR),住房价格,黄石市

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对地理加权回归(GWR)模型不能有效处理样本数据空间自相关性这一问题,构造局部时空窗口统计量,尝试改进时空加权回归(GTWR)模型。定义多时空窗口的概念,给出其选取、计算和验证方法;计算时空窗口包含的各样本点的被解释变量平均值,与样本拟合点的被解释变量值的比值,作为新的解释变量,构建改进的时空加权回归(IGTWR)模型。以土地稀缺、多中心、资源型城市——湖北省黄石市为例,收集2007~2012年商品住宅成交价格1.93万个数据和398个楼栋样本点,选取小区等级、绿化率、楼栋总层数、容积率、距区域中心距离和销售年份6个解释变量,分别利用常规线性回归(OLS)、GWR、GTWR和IGTWR方法进行回归分析。模型结果表明计算Moran'sI指数和分析时间序列的自相关性,能确定时空窗口的大小和数量的选取;IGTWR模型和各变量的回归统计均通过0.05的显著性水平检验,有关解释变量的系数估计值在空间分布上能合理解释;GWR拟合结果优于OLS,GTWR优于GWR,而IGTWR拟合精度最好。与GTWR模型分析相比,IGTWR模型R2从0.877提升到0.919,而AICc、残差方(RSS)和均方差(MSE)分别从6226、49996201和354.427下降到6206、32327472和284.969。案例研究表明IGTWR能够表达一定时空范围的时空自相关特征,减小了估计误差,提高了回归拟合精度。

References

[1]  Can A.Specification and estimation of hedonic housing price models[J].Regional Science and Urban Economics, 1992,22(3): 453-474.
[2]  Dubin R,Pace R K,Thibodeau T G.Spatial autoregression techniques for real estate Data[J].Journal of Real Estate Literature, 1999,7(1):79-96.
[3]  Fotheringham A S,Brunsdon C,Charlton M.Geographically weighted regression[M].Chichester,UK: John Wiley and Sons, 2002.
[4]  Bitter C,Mulligan G F,Dall'erba S.Incorporating spatial variation in housing attribute prices[J].Journal of Geographical Systems, 2007,9(1):7-27.
[5]  Demsar U,Fotheringham A S,Charlton M E.Exploring the spatio- temporal dynamics of geographical processes with geographically weighted regression and geovisual analytics[J]. Information Visualization,2008,34(7):1-17.
[6]  Yu D L,Lv B Y.Measurement of Provincial Total Factor Production: Application of Geographically Weighted Regression from a Spatial Temporal Perspective[J].Journal of Chinese Soft Science, 2009,16(11):160-170.
[7]  Barry R R K,Clapp J M,Rodriguez,M.Spatiotemporal Autoregressive Models of Neighborhood Effects[J].Journal of Real Estate Finance and Economics,1998,17(1):15-33.
[8]  Pace R K,Barry R,Gilley O W,Sirmans C F.A method for spatial- temporal forecasting with an application to real estate prices[J]. International Journal of Forecasting,2000,16(2):229-246.
[9]  Sun H,Tu Y,Yu S.A spatio-temporal autoregressive model for multi-unit residential market analysis[J].The Journal of Real Estate Finance and Economics,2005,31(2):155-187.
[10]  Huang B,Huang W,Barry M.Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices[J].International Journal of Geographical Information Science,2010,24(3):383-401.
[11]  Dubé J, Legros D.A spatio-temporal measure of spatial dependence: An example using real estate data [J]. Papers in Regional Science, 2013, 92(1): 19-30.
[12]  Ingrid Nappi-Choulet,Tristan-Pierre Maury.A Spatial and Temporal Autoregressive Local Estimation for the Paris Housing Market[J].Journal of Regional Science,2011,51(4):732-750.
[13]  Dubé J,Legros D.Dealing with spatial data pooled over time in statistical models[J].Letters in Spatial and Resource Sciences, 2013,6(1):1-18.
[14]  Smith T E,Wu P.A spatio-temporal model of housing prices based on individual sales transactions overtime[J]. Journal of Geographical Systems,2012,11(4):333-355.
[15]  Kumar S,Lal R,Liu D.A geographically weighted regression kriging approach for mapping soil organic carbon stock[J]. Geoderma, 2012,189(190):627-634.
[16]  Robinson C,Schumacker R E.Interaction effects:Centering,variance inflation factor,and interpretation issues[J]. Multiple Linear Regression Viewpoints,2009,35(1):6-11.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133