全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
地理科学  2011 

中国入境旅游需求预测的神经网络集成模型研究

, PP. 1208-1212

Keywords: 入境旅游需求,机器学习,神经网络集成,游客量预测

Full-Text   Cite this paper   Add to My Lib

Abstract:

对入境旅游需求进行科学合理的预测直接关系到中国入境旅游发展战略的制定和实施,具有积极的现实意义。目前,BP神经网络作为一种常见的传统机器学习方法,被广泛用于旅游需求预测建模。然而,由于BP神经网络存在诸如易过配、参数设置难、获得全局最优解难等局限,在实际应用中表现极不稳定。有鉴于此,拟将BP神经网络和集成学习技术相结合,构建入境旅游需求预测的神经网络集成模型,并对美国、英国、澳大利亚3个客源国近20a来的入境游客量数据进行验证分析。结果表明,神经网络集成有效克服了单个BP神经网络在小规模数据集上的局限性,获得了比包括BP神经网络在内的传统机器学习技术和传统统计方法更为准确的预测结果,这有利于更加准确地把握中国入境旅游市场需求。

References

[1]  Tihomir S. A Comparison of Two Econometric Models (OLS And SUR) for Forecasting Croatian Tourism Arrivals [M]. Zagreb: Croatian National Bank, 2002:112-145.
[2]  Carey G, Law R. Modeling and forecasting tourism demand for arrivals with stochastic nonstationary seasonality and intervention [J]. Tourism Management, 2002, 23(3): 499-510.
[3]  Carey G, Law R. Incorporating the rough sets theory into travel demand analysis [J]. Tourism Management, 2003, 24(5): 511-517.
[4]  Ao S I. Using fuzzy rules for prediction in tourist industry with uncertainty [J]. Computer Society, 2003: 213-218.
[5]  Law R. Back-propagation learning in improving the accuracy of neural network-based tourism demand forecasting [J]. Tourism Management, 2000, 21(4): 331-340.
[6]  Mjolsness E, DeCoste D. Machine learning for science: State of the art and future prospects [J]. Science, 2001, 293(5537): 2051-2055.
[7]  Law R. A neural network model to forecast Japanese demand for travel to Hong Kong [J]. Tourism Management, 1999, 20: 89-97.
[8]  雷可为, 陈 瑛. 基于BP神经网络和ARIMA组合模型的中国入境游客量预测[J]. 旅游学刊, 2007, 4(22): 20~25.
[9]  Hansen L K, Salamon P. Neural network ensembles [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(10):993-1001.
[10]  Freund Y, Schapire R E. Experiments with a new boosting algorithm [M]//Proceedings of the 13th International Conference on Machine Learning, 1996: 148-156.
[11]  Breiman L. Bagging predictors [J]. Machine Learning, 1996, 24(2):123-140.
[12]  Bauer E, Kohavi R. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants [J]. Machine Learning, 1999, 36(1-2):105-139.
[13]  Breiman L. Random forest [J]. Machine Learning, 2001, 45(1):5-32.
[14]  Efron B, Tibshirani R. An Introduction to the Boostrap [M].New York: Chapman & Hall, 1993:78-90.
[15]  中华人民共和国国家旅游局. 中国旅游统计年鉴 (1991~2009) [M].北京:中国旅游出版社.
[16]  中国国家统计局. 国际统计年鉴 (1991~2009)[M/OL]. http://www.stats.gov.cn/tjsj/qtsj/gjsj/.
[17]  Qu H-L, Lam S. A travel demand model for Mainland Chinese tourists to Hong Kong [J]. Tourism Management, 1997, 18(8):593-597.
[18]  张玉娟, 赵定涛.中国入境旅游需求影响因素分析[J]. 经济理论与经济管理, 2008, (5):51~55.
[19]  Zinkevich M. Online convex programming and generalized infinitesimal gradient ascent [M]//Proceedings of 20th International Conference on Machine Learning, 2003: 928-936.
[20]  Hernandez-Lopez, M. Future tourists' characteristics and decisions: The use of genetic algorithms as a forecasting method [J]. Tourism Economics, 2004, 10(3): 245-262.
[21]  Mitchell T. Mahcine Leanring [M]. New York: McGraw-Hill, 1997:45-63.
[22]  Jiang Y, Li M, Zhou Z-H. Generation of comprehensible hypothesis from gene expression data [M]// Li J, et al. Lecture Notes in Bioinformatics 3916. Berlin: Springer, 2006: 116-123.
[23]  Li M, Zhou Z-H. Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples [J]. IEEE Transactions on Systems, Man and Cybernetics-Part A: Systems and Humans, 2007, 37(6): 1088-1098.
[24]  Dietterich T G. Machine learning research: Four current diretions [J]. AI Magazine, 1997, 18(4): 97-136.
[25]  Sollich P, Krogh A. Learning with ensembles: How over-fitting can be useful [M]//Touretzky D S, Mozer M C, Hasselmo M E. Advances in Neural Information Processing Systems 8. Cambridge, MA: The MIT Press, 1996: 190-196.
[26]  Breiman L. Bias, variance, and arcing classifiers [M]//Technical Report 460. Berkeley CA: Statistics Department, University of California, 1996.
[27]  Friedman J, Hastie T, Tibshirani R. Additive logistic regression: A statistical view of boosting (with discussions) [J]. The Annals of Statistics, 2000, 28(2):337-407.
[28]  中国国家统计局. 中国统计年鉴 (1991~2009)[M/OL]. http://www.stats.gov.cn/tjsj/ndsj/.
[29]  Witten I H, Frank E. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations [M]. San Francisco: Morgan Kaufmann, 2000:332-340.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133