Crill P, Bartlett K, Roulet N. Methane flux from boreal peatlands[J]. Suo, 1992, 43:173-183.
[2]
Saarnio A, Alm J, Silvola J, et al. Seasonal variation in CH4 emissions and production and oxidation potentials at microsites on an oligotrophic pine fen [ J]. Oecologia, 1997, 110: 414-422.
[3]
Chasar L S, Chanton J P. Radiocarbon and stable carbon isotopic evidence for transport and transformation of dissolved organic carbon dissolved inorganic carbon and CH4 in a northern Minnesota peatland [J]. Global Biogeochemical Cycles, 2000, 14:1095-1108.
[4]
Frenzel P, Karofeld. CH4 emission from a hollow-ridge complex in a raised bog: The role of CH4 production and oxidation [J]. Biogeochemistry, 2000, 51:91-112.
[5]
Frenzel P, Rudolph J. Methane emission from a wetland plant: the role of CH4 oxidation in Eriophorium [J]. Plant and Soil, 1998, 202:27-32.
[6]
崔宝山.影响沼泽地CH4 排放若干因子初探[J].地理科学,1997,17(5):419~426.
[7]
Nedwell D, Watson A. CH4 production, oxidation and emission in a UK ombrotrophic peat bog: Influence of SO2-4 from acid rain [J]. Soil Biol Biochem, 1995, 27:893-903.
[8]
Alm J, Talanov A, Saarnio S, et al. Reconstruction of the carbon balance for micrositas in a boreal oligotrophic pine fen,Finland [J]. Oecologia, 1997, 110:423-431.
[9]
Conrad R, Schutz H, Babbel M. Temperature limitation of hydrogen turnover and methanogensis in anoxic paddy soil [J].FEMS Microbiol Ecol, 1987, 45:281-289.
[10]
Crill M P, Bartlett K B, Harriss R C, et al. Methane flux from Minnesota peatlands [J]. Global Biogeochemical Cycles,1988, 2:371-384.
[11]
Dunfield P, Knowles R, Dumont R, et al. Methane production and consumption in temperate and subarcctic peat soils: response to temperature and pH [J]. Soil Biol Biochem, 1993,25:321-326.
[12]
Calhoun A, King G M. Regulation of root-associated methanotrophy by oxygen availability in the rhizosphere of two aquatmacrophytes [J]. Appl Environ Microbiol, 1997, 63:3051-3058.
[13]
Harriss R C, Sebacher D J. Methane flux in forested freshwater swamps of the southern United States [J]. Geophys Res Lett, 1981, 8:1002-1004.
[14]
Norton J M, Smith J L, Firestone M K. Carbon flow in the rhizosphere of ponderosa pine seedling [J]. Soil Biol Biochem,1990, 22:449-455.
[15]
Minoda T, Kimura M. Contribution of photosynthesized carbon to the methane emitted from paddy fields [J]. Geophys Res Lett, 1994, 21:2007-2010.
[16]
Amaral J A, Knowles R. Methane metabolism in temperate swamp [J]. Appl Environ Microbiol, 1994, 60:3945-3951.
[17]
Bachoon D, Jones R D. Potential rates of methanogenesis in sawgrass marshes with peat and marl soils in the Everglades [J]. Soil Biol Biochem, 1992, 24:21-27.
[18]
Nilsson M. Methane production from peat, regulated by organic chemical composition, elemental and anion concentrations, pH and depth [A]. International Peat Congress [C].IPS. Jyska, 1992, 125-133.
[19]
Smith L K, Lewis W W Jr. Seasonality of methane emissions from five lakes and associated wetlands of the Colorado Rockies [J]. Global Biogeochem Cycles, 1992, 6:323-338.
[20]
Huang Y, Sass R, Fisher Jr. F M. Methane emission from Texas rice paddy soils 1. quantitative multi-year dependence of CH4 emission on soil, cultivars and grain yield [J]. Global change biology, 1997, (3) :491-500.
[21]
Sass R L, Fisher F M, Harcombe P A, et al. Methane production and emission in a Texas rice field [J]. Global Biogeochem Cycles, 1990, (4):47-68.
[22]
Prieme A, Christensen S. Seasonal and spatial variation of methane oxidation in a Danish spruce forest [J]. Soil Biol Biochem, 1997, 29:1165-1172.
[23]
Saarnio S, Alm J, Martikainen P J, et al. Effects of raised CO2 on potential CH4 production and oxidation in, and CH4 emission from a boreal mire [J]. J Ecology, 1998, 86:261-268.
[24]
Moore T R, Knowles R. Methane emission from fen, bog and swamp peatlands in Quebec [J]. Biogeochemistry, 1990, 11:45-61.
[25]
Williams R J, Crawford R L. Methane production in Minnesota peatlands [J]. Appl Environ Microbiol, 1984, 47:1266-1271.
[26]
Lindau C W, Bollich P K, DeLaune R D, et al. Methane mitigation in flooded Louisiana rice fields [J]. Biol Fertil Soils,1993, 15:174-178.
[27]
Aerts R, Toft S. Nutritional controls on carbon dioxide and methane emission from carex-dominated peat soils [J]. Soil Biol Biochem, 1997, 29: 168-169.
[28]
Wang Z, Delaune R D, Lindau C W, et al. Methane production from anaerobic soilamended with rice straw and nitrogen fertilizers [J]. Fert Res, 1992, 33:115-121.
[29]
IPCC. Climate Change 1995-The Science of Climate Change [R]. Summary for Policymakers, 1995.
[30]
Moore K E, Roulet N T. Methane flux: water relations in northern wetlands [J]. Geophys Res Lett, 1993, 20:587-590.
[31]
Saarnio S, Saarinen T, Vasander H, et al. A moderate increase in the annual CH4 efflux by raised CO2 or NH4NO3 supply in boreal oligotrophic mire [J]. Global Change Biology, 2000, 6:137-144.
[32]
Houweling S, Dentener F, Lelieveld J. Simulation of preindustrial atmospheric methane to constrain the global source strength of natural wetlands [J]. J Geophys Res, 2000, 105:17243-17255.
[33]
Morrissey L A, Livingston G P. Methane emissions from Alaska arctic tundra: an assessment of local spatial variability [J]. J Geophys Res, 1992, 97(D15): 16661-16670.
[34]
Chasar L S, Chanton J P, Glaser P H, et al. Methane concentration and stable isotope distribution as evidence of rhizospheric processes: comparison of a fen and bog in the glacial lake Agassiz peatland complex [J]. Annals of Botany, 2000, 86:655-66.
[35]
赵魁义.中国沼泽志[M].北京:科学出版社,1999.
[36]
Aselmann I, Crutzen P J. Global distribution of natural freshwater wetlands and rice paddies, their net primary production,seasonality and possible methane emissions [J]. J Atmosph Chem, 1989, 8:307-358.
[37]
Sundh I, Mikkela C, Nilsson M, et al. Potential aerobic methane oxidation in a sphagnum-dominated peatland-controlling factors and relation to methane emission [J]. Soil Biol Biochem, 1995, 27:829-837.
Moore T R, Dalva M. Methane and carbon dioxide exchange potentials of peat soils in aerobic and anaerobic laboratory incubations [J]. Soil Biol Biochem, 1997, 29(8): 1157-1164.
[41]
Sebacher D I, Harrias R C, Bartlett K B, et al. Atmospheric methane sources: Alaskan tundra bogs, an Alpine fen and a subartic boreal marsh [J]. Tellus, 1986, 38:1-10.
[42]
King G M, Roslev P, Skovgard H. Distribution and rate of methane oxidation in sediments of the Florida Everglades [J].Appl Environ Microbiol, 1990, 6: 2902-2911.
Minoda T, Kimura M. Photosynthates as dominant source of CH4 and CO2 in soil water and CH4 emitted to the atmosphere from paddy fields [J]. J Geophys Res, 1996, 101:21091-21097.
[45]
崔宝山三江平原沼泽地CH4 排放规律及估算[J]地理科学,1997,17(1):93~96.
[46]
Yagi K, Minami K. Effect of organic matter applications on methane emission from some Japanese paddy fields [J]. Soil Sci Plant Nutr, 1990, 36:599-610.
[47]
Wang Z P, Lindau C W, Delaune R D, et al. Methane emission and trapment in flooded rice soils as affected by soil properties [J]. Biol Fertil Soils, 1993, 16:163-168.
[48]
Bartlett K B, Crill P M, Sass R L, et al. Methane emissions from tundra environments in Yyukon-kuskokwim delta,Alaska [J]. J Geophys Res, 1992, 97(D15):16645-16660.
[49]
Svensson B H. Different temperature optima for methane formation when enrichments from acid peat are supplemented with acetate or hydrogen [J]. Appl Environ Microbiol, 1984, 48:389-394.
[50]
Aerts R, Toft S. Nutritional controls on carbon dioxide and methane emission from carex-dominated peat soils [J]. Soil Biol Biochem, 1997, 29: 168-169.