全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
地理科学  2002 

效用最大化、logit变换和城市地理学的数量分析模型

, PP. 581-586

Keywords: 效用最大化,最大熵原理,logit模型,分形,空间复杂性,地理计算

Full-Text   Cite this paper   Add to My Lib

Abstract:

城市地理学的主要数学模型,包括城市化进程的logistic模型,城市位序-规模分布的幂指数模型以及城市人口密度衰减的负指数模型,都可以从两个简单的科学假设出发推导出来。文章证明,上述假设在理论上可以归结为效用最大化原理,其本质与信息熵最大化有着深刻的内在关系。城市地理学的主要模型作为标度定律都可以借助logit变换进行简化处理,从而为理论模型的实际应用以及城市演化动力学的模拟实验分析打开了方便之门。

References

[1]  Landis JD, Zhang M. Using GIS to improve urban activity and forecasting models: three examples. In: Fotheringham AS,Wegener M. Spatial models and GIS: New Potential and New Models[C]. London: Taylor & Francis, 2000, 63-81.
[2]  Wilson AG. Comlex Spatial Systems: The Modelling Foundations of Urban and Regional Analysis [M]. Singapore: Pearson Education Asia Pte Ltd., 2000.
[3]  周一星.城市地理学[M].北京:商务印书馆,1999.
[4]  周一星.城市化水平与国民生产总值关系的规律性探讨[J].人口与经济,1982,(1):28~33.
[5]  Bella A L. A short discussion of alternative approaches to modeling complex self-organising systems. In: Bertuglia C S, Bianchi G, Mela A (Eds). The City and Its Sciences [C]. Heidelberg: Physica-Verlag, 1998, 145-172.
[6]  陈彦光,刘继生.城市系统的异速生长关系与位序-规模法则--对Steindl模型的修正与发展[C].地理科学,2001,21(5):412~416.
[7]  Clark C. Urban population densities [J]. Journal of Royal Statistical Society, 1951, 114: 490-496.
[8]  Muth R. Cities and Housing: The Spatial Patterns of Urban Residential Land Use [M]. Chicago, IL: Unversity of Chargo Press, 1969.
[9]  Mills ES. Studies in the Structure of the Urban Economy [M]. Baltimore, MD: Johns Hopkins University Press,1972.
[10]  Curry, L. The random spatial economy: an exploration in settlement theory [J]. Annals of the Association of American Geographers, 1964, 54: 138-146.
[11]  Bussiere R, Snickers F. Derivation of the negative exponential model by an entropy maximizing method [J]. Environment and Planning A, 1970, 2: 295-301.
[12]  Cadwallader MT. Urban Geography: An Analytical Approach [J]. Upper Saddle River, NJ: Prentice Hall, 1997.
[13]  郝柏林.复杂性的刻画与"复杂性科学"[J].科学,1999,51(3):3~8.
[14]  Batty M, Longley PA. Fractal Cities: A Geometry of Form and Function [ M]. London: Academic Press, Harcourt Brace & Company, Publishers, 1994.
[15]  Naroll RS, Bertalanffy L yon. The principle of allometry in biology and social sciences [J]. General Systems Yearbook, 1956,1: 76-89.
[16]  Karmeshu. Demographic models of urbanization [J]. Environment and Planning B: Planning and Design, 1988, 15(1): 47-54.
[17]  刘继生,陈彦光.Davis规律与Beckmann模型的数理等价性--城市体系等级结构的宏观-微观对称性分析[J].经济地理,2001,21(2):231~234.
[18]  陈彦光.城市人口空间分布函数的理论基础与修正形式--利用最大熵方法推导关于城市人口密度衰减的Clark 模型[J].华中师范大学学报(自然科学版),2000,34(4):489~492.
[19]  陈彦光,刘继生.城市等级体系分形模型中的最大熵原理[J].自然科学进展,2001,11(11):1170~1174.
[20]  Batty. Less is more, more is different: complexity, morphology, cities, and emergence [J]. Environment and Planning B:Planning and Design, 2000, 27: 167-168.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133