全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
地理科学  2003 

磷脂脂肪酸在地下水微生物生态学中的应用及存在的若干问题

, PP. 740-745

Keywords: 磷脂脂肪酸,地下水微生物生态学,环境压力

Full-Text   Cite this paper   Add to My Lib

Abstract:

磷脂脂肪酸(PLFA)是研究地下水微生物生态的一种新兴技术,它比基于培养基的传统方法有许多明显的优势,但同时也存在一些需要解决的问题。样品中的PLFA总量可以通过转换因子估算地下水微生物的生物量,但微生物群落组成的差异和环境的物理变化都是潜在的误差来源,以传统微生物技术互补和选择合适的转换因子可提高结果的可靠性;PLFA还可以被用来指示地下水微生物在各种环境压力下的生理状态;用特定的PLFA生物标志物、PLFA的组成模式、指纹技术来描述地下水微生物的群落结构和变化特征时,存在的主要问题是不同微生物PLFA的重叠、背景值的干扰和环境因子变化的影响,以PLFA技术为主导,借助于数学统计方法,结合传统微生物技术、核酸鉴定、同位素示踪等多种技术可望有效地消除各种干扰因子,从而揭示完整的地下水微生物的生理生态,为地下水污染的生物修复提供理论指导。

References

[1]  Brockman F J. Post-sampling changes in microbial community composition and activity in a subsurface paleosol[J]. Micro. Ecol, 1998,(36):152-164.
[2]  Harvey H R, Fallom R D, Patton J S. The effect of organic matter and oxygen on the degradation of bacterial membrane lipids in marine sediments[J]. Geochimica et Cosmochimica Acta., 1986, (50):795-805.
[3]  Onstott. Observations pertaining to the origin and ecology of microorganisms recovered from the deep subsurface of Taylorsville Basin, Virginia[J]. Geomicrobiology Journal, 1998,(15):353- 385.
[4]  Frostegard A, Baath E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil[J]. Biol Fert Soil, 1996, (22):59-65.
[5]  Thomas J M. Assessment of the microbial potential for nitrate-enhanced bioremediation of a JP-4 fuel-contaminated aquifer[J]. J Ind Microbiol, 1997,(18):213-221
[6]  Ludvigsen L, Albrechtsen H J, Holst H, et al. Correlating phospholipid fatty acids PLFA in a landfill leachate polluted aquifer with biogeochemical factors by multivariate statistical methods[J]. FEMS Microbiol. Rev., 1997,(20): 447-460.
[7]  King M W G, et al.. Migration and natural fate of a coal tar creosote plume 2. Mass balance and biodegradation indicators[J]. Journal of Contaminant Hydrology, 1999,(39):281-307.
[8]  Ringelberg D B, Sutton S, White D C. Biomass, bioactivity and biodiversity, microbial ecology of the deep subsurface: analysis of ester-linked phospholipid fatty acids[J]. FEMS Microbiol Rev, 1997, (20):371-377.
[9]  Smith G A. Quantitative characterization of microbial biomass and community structure in subsurface material: a prokaryotic consortium responsive to organic contamination[J]. J Microbi-ol., 1986,(32):104-111.
[10]  White D C, Findlay R H. Biochemical markers for measurement of predation effect on the biomass, community structure, nutritional status, and metabolic activity of microbial biofilms[J]. Hydrobiologia, 1988, (159):119-123.
[11]  Law J H. Biosynthesis of cyclopropane rings[J]. Acc. Chem. Res., 1971, (4): 199-203.
[12]  Dowling N J E, Widdel F, White D C. Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulfate reducers and other sulfide-forming bacteria[J]. Journal of General Microbiology, 1986,(132):1815-1825.
[13]  Haack S K. Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities[J]. Appl Environ Microbiol., 1994,(60):2483-2493.
[14]  Bossio D A. Determinants of soil microbial communities: affects of agricultural management, season, and soil type on phospholipid fatty acid profiles[J]. Microb Ecol, 1998,(36):1-12.
[15]  Hedrick D B. Measuring soil microbial community diversity using polar lipid fatty acid and denaturing gradient gel electrophoresis data[J]. J Microbiol. Methods, 2000,(41):235-248.
[16]  Fang J, Barcelona M J, Alvarez P J J. A direct comparison between fatty acid analysis and intact phospholipid profiling for microbial identification[J]. Organic Geochemistry, 2000, (31): 881-888.
[17]  Madigan MT, Martinko J M, Parker J. Brock-Biology of microorganisms. 9th edition[M]. London: Prentice Hall, 1999.
[18]  White D C, Davis W M, Nickels J S, et al. Determination of the sedimentary microbial biomass by extractible lipid phosphate[J]. Oecologia, 1979, 40: 51-62.
[19]  Amy P S, Durham C, Hall D, et al. Starvation survival of deep subsurface isolates[J]. Curr Microbol, 1993, (26):345-352.
[20]  R黷ters Heike. Tracing viable bacteria in Wadden Sea sediments using phospholipid analysis. Carl von Ossietzky University, Oldenburg, 2001. 164.
[21]  Piffner. Relating ground water and sediment chemistry to microbial characterization at a BTEX-contaminated site[J]. Appl Biochem Biotech, 1997, (63):775-788.
[22]  Fang J and Barcelona M J. Structural determination and quantitative analysis of bacterial phospholipids using liquid chromatography/electrospray ionization/mass spectrometry[J]. J. Microbiol. Methods, 1998,(33): 23-35.
[23]  Ludvigsen L. Distribution and composition of microbial populations in a landfill leachate contaminated aquifer(Grindsted, Denmark)[J]. Microb Ecol., 1999,(37):197-207.
[24]  Guckert J B, Hood M A, White D C. Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: Increases in the trans/cis ratio and proportions of cyclopropyl fatty acids[J]. Appl. Environ. Microbiol., 1986,(52): 794-801.
[25]  Van Vleet E S, Quinn J G. Early diagenesis of fatty acids and isoprenoid alcohols in esturine and coastal sediments[J]. Geochim. Cosmochim. Acta, 1979,(43):289-303.
[26]  White D C. The groundwater aquifer microbiota: biomass, community structure, and nutritional status[J]. Dev. Industr. Microbiol., 1983,(24): 201-211.
[27]  Lehman R M, Colwell F S, Ringelberg D B, et al.. Combined microbial community-level analyses for quality assurance of terrestrial subsurface cores[J]. J. Microbiol Meth., 1995, (22):263-281.
[28]  Lytle C A, Gan Y D, White D C. Electrospray ionization/mass spectrometry compatible reversed-phase separation of phospholipids: piperidine as a post column modifier for negative ion detection[J]. J. Microbiol Methods, 2000, (41): 227-234.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133