全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

有限域上二次Bent函数的构造

DOI: 10.13190/jbupt.201003.52.zhangfr, PP. 52-56

Keywords: 密码函数,Boolean函数,Bent函数,最大非线性度

Full-Text   Cite this paper   Add to My Lib

Abstract:

References

[1]  常祖领, 柯品惠, 莫骄, 等. 超Bent函数的性质和构造[J]. 北京邮电大学学报, 2006, 29(3): 36-39. Chang Zuling, Ke Pinhui, Mo Jiao, et al. On properties and constructions of hyper-Bent func-tions[J]. Journal of Beijing University of Posts and Telecommunications, 2006, 29(3): 36-39.
[2]  Calet C, Charpin P, Zinoviev V A. Codes, Bent functions and permutations suitable for DES-like cryptosystem[J]. Des, Codes, Cryptography, 1998, 15(2): 125-156.
[3]  Rothaus O S. On Bent functions[J]. Journal of Combinatorial Theory Ser A, 1976, 20: 300-305.
[4]  Meng Qingshu, Yang Min, Zhang Huanguo, et al. A novel algorithm enumerating Bent functions[J]. Discrete Mathematics, 2008, 308(23): 5576-5584.
[5]  Khoo K, Gong Guang, Stinson D R. A new char- acterization of semi-Bent and Bent functions on finite fields[J]. Des, Codes, Cryptography, 2006, 38(2): 279-295.
[6]  Ma Wenping, Lee M, Zhang Futai. A new class of Bent functions[J]. IEICE Trans on Fundamentals of Electronics, Communications and Computer Sciences, 2005, E88-A(7): 2039-2040.
[7]  Udaya P. Polyphase and frequency hopping sequences obtained from finite rings. Kanpur: Dept Elec Eng Indian Inst Technol, 1992.
[8]  Kim S H, No J S. New families of binary sequences with low correlation[J]. IEEE Trans on Inform Theory, 2003, 49(11): 3059-3065.
[9]  Yu N Y, Gong Guang. Constructions of quadratic Bent functions in polynomial forms[J]. IEEE Trans on Inform Theory, 2006, 52(7): 3291-3299.
[10]  Hu Honggang, Feng Dengguo. On quadratic Bent functions in polynomial forms[J]. IEEE Trans on Inform Theory, 2007, 53(7): 2610-2615.
[11]  Canteaut A, Charpin P, Kyureghyan G M. A new class of monomial Bent functions[J]. Finite Fields and Their Applications, 2008, 14(1): 221-241.
[12]  Li Shenghua, Hu Lei, Zeng Xiangyong. Constructions of p-ary quadratic Bent functions[J]. Acta Appl Math, 2008, 100(3): 227-245.
[13]  Charpin P, Pasalic E, Tavernier C. On Bent and semi-Bent quadratic Boolean functions[J]. IEEE Trans on Inform Theory, 2005, 51(12): 4286-4298.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133