全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Shapley熵和Choquet积分的层次化风险评估

DOI: 10.13190/jbupt.200906.83.lüzhb, PP. 83-87

Keywords: 信息安全,风险评估,Shapley熵,Choquet积分,层次分析法

Full-Text   Cite this paper   Add to My Lib

Abstract:

References

[1]  Jones J A. An introduction to factor analysis of information risk (FAIR): a framework for understanding, analyzing, and measuring information risk[J]. Norwich University Journal of Information Assurance, 2006, 2(1): 1-67.
[2]  汤永利, 徐国爱, 钮心忻, 等. 基于信息熵的信息安全风险分析模型[J]. 北京邮电大学学报, 2008, 31(2): 50-53. Tang Yongli, Xu Guoai, Niu Xinxin, et al. Information security risk analysis model using information entropy[J]. Journal of Beijing University of Posts and Telecommunications, 2008, 31(2): 50-53.
[3]  赵冬梅, 马建峰, 王跃生. 信息系统的模糊风险评估模型[J]. 通信学报, 2007, 28(4): 51-56. Zhao Dongmei, Ma Jianfeng, Wang Yuesheng. Model of fuzzy risk assessment of the information system[J]. Journal on Communications, 2007, 28(4): 51-56.
[4]  Yager R R. On the entropy of fuzzy measures[J]. IEEE Transactions on Fuzzy Systems, 2000, 8(4): 453-461.
[5]  Torra V, Narukawa Y. The interpretation of fuzzy integrals and their application to fuzzy systems[J]. International Journal of Approximate Reasoning, 2006, 41(1): 43-58.
[6]  Peleg B, Sudholter P. Introduction to the theory of cooperative games[M]. New York: Springer-Verlag, 2007.
[7]  Dukhovny A. General entropy of general measures[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2002, 10(3): 213-225.
[8]  Satty T L. The analytic hierarchy process[M]. New York: McGraw-Hill, 1980.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133