Murphy K. Dynamic bayesian networks: representation, inference and learning. California: University of California Berkeley, 2002.
[2]
Levy B, Benveniste A, Nikoukhah R. High-level primitives for recursive maximum likelihood estimation[J]. IEEE Trans Automatic Control, 1996, 41(8): 1125-1145.
[3]
Boyen X, Koller D. Tractable inference for complex stochastic processes//Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. Wisconsin: IEEE, 1998: 33-42.
[4]
Murphy K, Weiss Y. The factored frontier algorithm for approximate inference in DBNs//Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence. Alberta: IEEE, 2001: 378-385.
[5]
Murphy K, Weiss Y, Jordan M. Loopy belief propagation for approximate inference: an empirical study//UAI '99: Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence. Stockholm: IEEE, 1999: 467-475.
[6]
Rish I, Brodie M. Adaptive diagnosis in distributed systems[J]. IEEE Transactions on Neural Networks, 2005, 16(5): 1088-1109.
[7]
Kandula S, Katabi D, Vasseur J P. Shrink: a tool for failure diagnosis in IP networks//Proceedings of ACM SIGCOMM MineNet Workshop. Pennsylvania: ACM, 2005: 173-178.
[8]
Dechter R. Bucket elimination: a unifying framework for probabilistic inference//Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence. Oregon: IEEE, 1996: 211-219.