全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

双层芯色散补偿光子晶体光纤

DOI: 10.13190/jbupt.201005.33.yuanjh, PP. 33-36

Keywords: 双层芯光子晶体光纤,多极法,内芯基模,外芯缺陷模,相位匹配波长

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了抑制通信系统中脉冲的展宽,根据色散补偿理论,提出了一种由单一石英材料制成的双层芯光子晶体光纤(DCCPCF).该光纤的色散值在155μm处可达到-6000ps/(nm〖DK〗?km).理论分析表明,在传输过程中内芯基模和外芯缺陷模以相位匹配波长为临界状态,在内芯与外芯之间相互交替传输,并在匹配波长处因模式发生强烈耦合而引起折射率产生大幅度波动.通过对结构参数d1、d2变化的情况下色散曲线的扰动情况进行分析,可为实际制备工作提供一定的理论指导.

References

[1]  Nielsen L G, Knudsen S N, Edvold B, et al. Dispersion compensating fibers[J]. Optical Fiber Technology, 2000, 6(2): 164-169.
[2]  Antos A J, Smith D K. Design and characterization of dispersion compensating fiber based on the LP01 mode[J]. Journal of Lightwave Tech, 1994, 12(3): 1739-1744.
[3]  Auguste J L, Blondy J M, Maury J, et al. Conception, realization, and characterization of a very high negative chromatic dispersion fiber [J]. Optical Fiber Technology, 2002, 8(1): 89-105.
[4]  Bishnu P P, Kamna P. Optimization of a dual-core dispersion slope compensating fiber for DWDM transmission in the 1480~1610nm band through G.652 single-mode fibers [J]. Opt Commun, 2002, 201(4): 335-344.
[5]  Auguste J L, Jindal R, Blondy J M, et al. -1800ps/(nm·km) chromatic dispersion at 1.55μm in dual concentric core fiber[J]. Electron Lett, 2000, 36(5): 1689-1691.
[6]  Thyagarajan K, Varshney R K, Palai P, et al. A novel design of a dispersion compensating fiber[J]. IEEE Photon Technol Lett, 1996, 8(11): 1508-1510.
[7]  Gerome F, Augugste J L, Blondy J M. Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber [J]. Optics Lett, 2004, 29(23): 2725-2727.
[8]  Gerome F, Augugste J L, Blondy J M. Very high negative chromatic dispersion in a dual concentric core photonic crystal fiber//OFC 2004. Log Angeles: , 2004: 22-27.
[9]  Huttunen A, Torma P. Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area[J]. Optics Express, 2005, 13(2): 627-635.
[10]  Fujisawa T, Saitoh K, Wada K, et al. Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation[J]. Optics Express, 2006, 14(2): 885-893.
[11]  Ni Yi, Zhang Lei, An Liang, et al. Dual-core photonic crystal fiber for dispersion compensation[J]. IEEE Photon Technol Lett, 2004, 16(6): 1516-1518.
[12]  饶云江. 基于光子晶体光纤的法布里-珀罗干涉传感器[J]. 电子科技大学学报, 2009, 38(5): 487-494. Rao Yunjiang. Fiber-optic Fabry-Perot interferometric (FFPI) sensors based on photonic crystal fibers[J]. Journal of University of Electronic Science and Technology of China, 2009, 38(5): 487-494.
[13]  White T P, Kuhlmey B T, McPhedran R C, et al. Multipole method for microstructured optical fibers[J]. Journal of the Optical Society of America B, 2002, 19(10): 2322-2330.
[14]  Kuhlmey B T, White T P, Renversez G, et al. Multipole method for microstructured optical fibers. Ⅱ. implementation and results[J]. Journal of the Optical Society of America B, 2002, 19(10): 2331-2340.
[15]  闫海峰, 俞重远, 刘玉敏, 等. 利用有效折射率法对光子晶体光纤非线性系数的研究[J]. 北京邮电大学学报, 2008, 31(5): 18-20. Yan Haifeng, Yu Zhongyuan, Liu yumin, et al. Analysis of nonlinear coefficient in photonic crystal fibers by effective refractive index approach[J]. Journal of Beijing University of Posts and Telecommunications, 2008, 31(5): 18-20.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133