全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于熵检测的图像噪声方差小波域估计

DOI: 10.13190/jbupt.201105.1.lity, PP. 1-5

Keywords: 小波变换,,高斯噪声,方差估计

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一种在小波域中基于熵值检测的图像噪声方差估计算法.利用小波变换能显著降低图像信号的熵而并不改变高斯噪声熵的特性以及噪声熵值与噪声方差之间呈对数关系变化的规律,定量地分析了含噪图像在小波高频对角子带中系数的熵值随噪声幅值的变化规律,揭示出这种变化关系对图像具有较强的鲁棒性,从而利用这种变化关系,通过对含噪图像小波域熵值的检测对高斯噪声进行估计.仿真结果表明,提出的算法能够有效估计出图像中噪声的方差,并且受图像细节影响较小,其性能优于现有其他算法.

References

[1]  Liu C, Freeman W T, Szeliski R, et al. Noise estimation from a single image//2006 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2006: 901-908.
[2]  Gindele E B, Serrano N. Estimating noise for a digital image utilizing updated statistics: United State, 7054501. 2006-05-30. http://www.freepatentsonline.com/7054501.pdf.
[3]  Jolion J M, Meer P, Rosenfeld A. A fast parallel algorithm for blind estimation of noise variance[J]. IEEE Trans PAMI, 1990, 12(2): 216-223.
[4]  Donoho D. Denoising by soft thresholding[J]. IEEE Trans Information theory, 1995, 41(3): 613-627.
[5]  Donoho D, Johnstone I M. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994, 81(3): 425-455.
[6]  Li Tianyi, Wang Minghui, Li Tianjian. Estimating noise parameter based on the wavelet coefficients estimation of original image//2010 International Conference on Challenges in Environmental Science and Computer Engineering. Wuhan: IEEE Computer Society, 2010: 126-129.
[7]  Shannon. A mathematical theory of communication[J]. Bell System Tech Journal, 1948, 27: 379-423, 623-656.
[8]  雷芳, 黄进. 一种新信息熵及其若干性质[J]. 重庆邮电学院学报: 自然科学版, 2006, 18(6): 778-780. Lei Fang, Huang Jin. A new information entropy and its properties [J]. Journal of Chongqing University of Posts and Telecommunications: Natural Science Edition, 2006, 18(6): 778-780.
[9]  徐久成, 孙林. 一种新的基于决策熵的决策表约简方法[J]. 重庆邮电学院学报: 自然科学版, 2009, 21(4): 479-483. Xu Jiucheng, Sun Lin. New reduction method based on decision information entropy in decision table [J]. Journal of Chongqing University of Posts and Telecommunications: Natural Science Edition, 2009, 21(4): 479-483.
[10]  Mallat S G. A wavelet tour of signal processing[M]. 2th ed. San diego: Academic Press, 1998: 403-404.
[11]  Mallat S G. A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Trans PAMI, 1989, 11(7): 674-693.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133