Liu C, Freeman W T, Szeliski R, et al. Noise estimation from a single image//2006 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2006: 901-908.
[2]
Gindele E B, Serrano N. Estimating noise for a digital image utilizing updated statistics: United State, 7054501. 2006-05-30. http://www.freepatentsonline.com/7054501.pdf.
[3]
Jolion J M, Meer P, Rosenfeld A. A fast parallel algorithm for blind estimation of noise variance[J]. IEEE Trans PAMI, 1990, 12(2): 216-223.
[4]
Donoho D. Denoising by soft thresholding[J]. IEEE Trans Information theory, 1995, 41(3): 613-627.
[5]
Donoho D, Johnstone I M. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994, 81(3): 425-455.
[6]
Li Tianyi, Wang Minghui, Li Tianjian. Estimating noise parameter based on the wavelet coefficients estimation of original image//2010 International Conference on Challenges in Environmental Science and Computer Engineering. Wuhan: IEEE Computer Society, 2010: 126-129.
[7]
Shannon. A mathematical theory of communication[J]. Bell System Tech Journal, 1948, 27: 379-423, 623-656.
[8]
雷芳, 黄进. 一种新信息熵及其若干性质[J]. 重庆邮电学院学报: 自然科学版, 2006, 18(6): 778-780. Lei Fang, Huang Jin. A new information entropy and its properties [J]. Journal of Chongqing University of Posts and Telecommunications: Natural Science Edition, 2006, 18(6): 778-780.
[9]
徐久成, 孙林. 一种新的基于决策熵的决策表约简方法[J]. 重庆邮电学院学报: 自然科学版, 2009, 21(4): 479-483. Xu Jiucheng, Sun Lin. New reduction method based on decision information entropy in decision table [J]. Journal of Chongqing University of Posts and Telecommunications: Natural Science Edition, 2009, 21(4): 479-483.
[10]
Mallat S G. A wavelet tour of signal processing[M]. 2th ed. San diego: Academic Press, 1998: 403-404.
[11]
Mallat S G. A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Trans PAMI, 1989, 11(7): 674-693.