全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

自适应遗传优化BP网络的研究与应用

DOI: 10.13190/jbupt.201205.41.252, PP. 41-45

Keywords: 自适应遗传算法,种群多样性,BP网络,流量分类

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对遗传算法易出现种群多样性被破坏、早熟收敛的问题,在Srinivas的自适应遗传算法(AGA)的基础上,引入种群多样性的度量参数,提出一种改进的自适应遗传算法(MAGA),利用种群多样性和适应度的变化趋势调整交叉和变异概率,继而提出基于MAGA优化BP(back-propagation)神经网络的流量分类方法(MAGA+BP),兼顾了MAGA和BP算法分别在搜索全局和局部最优解方面的优势.在剑桥大学共享的网络流量数据上进行了仿真实验,结果表明,MAGA较好地维持了种群的多样性,克服了AGA早熟收敛的问题,搜索到最优解的适应度提高了10.17%,MAGA+BP方法对流量数据具有较好的分类效果.

References

[1]  Moore A W, Zuev D. Internet traffic classification using Bayesian analysis techniques //SIGMETRICS 2005. New York: ACM Press, 2005: 50-60.
[2]  Li W, Canini M, Moore A W, et al. Efficient application identification and the temporal and spatial stability of classification schema [J]. Computer Networks, 2009, 53(6): 790-809.
[3]  马永立, 钱宗珏, 寿国础,等. 机器学习用于网络流量识别[J].北京邮电大学学报, 2009, 32(1):65-68. Ma Yongli, Qian Zongjue, Shou Guochu, et al. Network flow identification based on machine learning[J]. Journal of Beijing University of Posts and Telecommunications, 2009, 32(1):65-68.
[4]  张剑, 钱宗珏, 寿国础,等.在线聚类的网络流量识别[J].北京邮电大学学报, 2011, 34(1):103-106. Zhang Jian, Qian Zongjue, Shou Guochu, et al. Network traffic identification based on online clustering[J]. Journal of Beijing University of Posts and Telecommunications, 2011, 34(1):103-106.
[5]  王芳, 程水源, 李明君,等. 遗传算法优化神经网络用于大气污染预报[J]. 北京工业大学学报, 2009, 35(9):1230-1234. Wang Fang, Cheng Shuiyuan, Li Mingjun, et al. Optimizing BP networks by means of genetic algorithms in air pollution prediction [J]. Journal of Beijing University of Technology, 2009, 35(9):1230-1234.
[6]  童小华, 张学, 刘妙龙. 遥感影像的神经网络分类及遗传算法优化[J]. 同济大学学报:自然科学版, 2008, 36(7):985-989. Tong Xiaohua, Zhang Xue, Liu Miaolong. Neural network classification with optimization by genetic algorithms for remote sensing imagery [J]. Journal of Tongji University: Natural Science, 2008, 36(7):985-989.
[7]  张京钊, 江涛. 改进的自适应遗传算法[J]. 计算机工程与应用, 2010, 46(11):53-55. Zhang Jingzhao, Jiang Tao. Improved adaptive genetic algorithm [J]. Computer Engineering and Applications, 2010, 46(11): 53-55.
[8]  Srinivas M, Patnailk L M. Adaptive probabilities of crossover and mutation in genetic algorithms [J]. IEEE Transactions on System, Man and Cybernetics, 1994, 24(4): 656-667.
[9]  Moore A W, Zuev D, Crogan M. Discriminators for use in flow-based classification . London: Queen Mary, University of London, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133