全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

压缩传感非稀疏宽带频谱导频检测方法

DOI: 10.13190/jbupt.201206.65.xuwl, PP. 65-69

Keywords: 宽带频谱检测,压缩传感,认知无线电,稀疏性,导频检测

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了突破频谱稀疏性对压缩传感技术的限制,提出了一种基于压缩传感的频谱检测方法,在保证对主用户的干扰不超过指定门限的前提下,通过对目标频段的主用户信号和导频信号在频域进行线性运算,保留频谱空洞处的导频分量,把对非稀疏的主用户信号的恢复转化为对稀疏导频信号的恢复.该方法解决了认知无线电宽带频谱检测中,压缩传感技术在主用户信号非稀疏时的失效问题.仿真结果表明,导频检测方法可以对非稀疏频谱的频谱空洞位置进行准确检测.

References

[1]  Donoho D L. Compressed sensing [J]. IEEE Trans on Information Theory, 2006, 52(4): 1289-1306.
[2]  Candes E, Romberg J, Tao T. Robust uncertainty princi-ples: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans on Information Theory, 2006, 52(2): 489-509.
[3]  Tropp J A, Laska J N, Duarte M F, et al. Beyond nyquist: efficient sampling of sparse bandlimited signals[J]. IEEE Trans on Information Theory, 2010, 56(1): 520-544.
[4]  Zhang Z, Li H, Yang D, et al. Collaborative compressed spectrum sensing: what if spectrum is not sparse?[J]. Electronics Letters, 2011, 47(8): 519-520.
[5]  Zeng Fanzi, Tian Zhi, Li Chen. Distributed compressive wideband spectrum sensing in cooperative multi-hop cognitive networks//ICC 2010. Cape Town: IEEE Press, 2010: 1-5.
[6]  Taheri O, Vorobyov S A. Sparse channel estimation with lp-norm and reweighted l1-norm penalized least mean squares//ICASSP 2011. Prague: IEEE Press, 2011: 2864-2867.
[7]  Cheng S, Stankovic V, Stankovic L. An efficient spectrum sensing scheme for cognitive radio[J]. Signal Processing Letters, 2009, 16(6): 501-504.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133