全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于联合稀疏模型的OFDM压缩感知信道估计

DOI: 10.13190/j.jbupt.2014.03.001, PP. 1-6

Keywords: 信道估计,正交频分复用,压缩感知,联合稀疏模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对正交频分多路复用(OFDM)系统,比较了基于压缩感知的不同导频设计方案及相应信道估计性能.基于信道响应的时域稀疏和缓变特征,提出了基于联合稀疏模型的压缩感知信道估计方法,进一步提高了信道估计的性能.该方法将连续若干个OFDM符号的信道估计问题转化为联合稀疏模型下的压缩感知问题,充分利用信道的稀疏特性和时间相关性进行信道估计.结合短波OFDM系统,比较了几种信道估计方法的性能.仿真结果表明,与传统的最小平方误差信道估计方法和逐符号的压缩感知信道估计方法相比,基于联合稀疏特征的信道估计方法可进一步改善估计性能,对时变信道具有更好的适应性.

References

[1]  Tong Lang, Sadler B M, Dong M. Pilot-assisted wireless transmissions[J]. IEEE Signal Processing Mag, 2004, 21(6): 12-25.
[2]  Coleri S, Ergen M, Puff A, et al. A study of channel estimation in OFDM systems[C]//56th Vehicular Technology Conference (VTC 2002). Vancouver, Canada: IEEE Press, 2002: 894-898.
[3]  Hsieh M, Wei C. Channel estimation for OFDM systems based on comb-type pilot arrangement in frequency selective fading channels[J]. IEEE Transactions on Consumer Electronics, 1998, 44(1): 217-225.
[4]  董秀洁, 王莉, 王素菊. 一种改进的LS信道估计算法 [J]. 哈尔滨理工大学学报, 2009, 14(1): 47-50. Dong Xiujie, Wang Li, Wang Suju. An improved LS channel estimation algorithm[J]. Journal of Harbin Uni- versity of Science and Technology, 2009, 14(1): 47-50.
[5]  Taubock G, Hlawatsch F, Eiwen D, et al. Compressive estimation of doubly selective channels in multicarrier systems: leakage effects and sparsity-enhancing processing[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 255-271.
[6]  Bajwa W U, Haupt J, Sayeed A M, et al. Compressed channel sensing: a new approach to estimating sparse multipath channels[J]. Proceedings of the IEEE, 2010, 98(6): 1058-1076.
[7]  Qi Chenhao, Wu Lenan. Optimized pilot placement for sparse channel estimation in OFDM systems[J]. IEEE Signal Processing Letters, 2011, 18(12): 749-752.
[8]  Qi Chenhao, Wu Lenan. Tree-based backward pilot generation for sparse channel estimation[J]. Electronics Letters, 2012, 48(9): 501-502.
[9]  Pakrooh P, Amini A, Marvasti F. OFDM pilot allocation for sparse channel estimation[J]. Eurasip Journals on Advances in Singal Processing, 2012(3): 59.
[10]  Applebaum L, Bajwa W U, Calderbank A R, et al. Deterministic pilot sequences for sparse channel estimation in OFDM systems[EB/OL][2014-04-21]//17th International Conference on Digital Signal Processing (DSP). Corfu, Greece: IEEE Press, 2011: 1-7.
[11]  Baron D. Wakin M B, Duarte M. Distributed compressed sensing.
[12]  王韦刚, 杨震, 胡海峰. 分布式压缩感知实现联合信道估计的方法[J]. 信号处理, 2012, 28(6): 778-784. Wang Weigang, Yang Zhen, Hu Haifeng. The method of achieving simultaneous channels estimation on distributed compressed sensing[J]. Signal Processing, 2012, 28(6): 778-784.
[13]  Tropp J A, Gilbert A C, Strauss M J. Simultaneous sparse approximation via greedy pursuit[C]//IEEE International Conference on Acoustics, Speech and Signal Processing 2005 Proceedings (ICASSP). Philadelphia, USA: IEEE Press, 2005: 721-724.
[14]  Barbotin Y, Hormati A, Rangan S, et al. Estimation of sparse MIMO channels with common support[J]. IEEE Transactions on Communications, 2012, 60(12): 3705-3716.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133