全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于改进Kruskal算法的WSN故障节点检测方法

DOI: 10.13190/j.jbupt.2014.04.022, PP. 103-107

Keywords: 无线传感器网络,故障检测,最小生成树,改进Kruskal算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了一种基于改进Kruskal算法的无线传感器网络(WSN)故障节点检测方法.该方法首先通过集中式的改进Kruskal最小生成树算法来获取可信的节点集合,之后依据可信节点,采用邻居节点比较算法对传感器节点的感知值进行分布式分析和处理,判定发生故障的传感器节点.同时为了容忍节点的临时故障,引入了时间冗余.仿真结果表明,在节点故障率高达35%时,该方法依然能快速定位故障节点,并且同时保证很高的检测精确度.

References

[1]  Krishnamachari B, Iyengar S. Distributed bayesian algorithms for fault-tolerant event region detection in wireless sensor networks[J]. IEEE Transactions on Computers, 2004, 53(3): 241-250.
[2]  Luo Xuanwen, Dong Ming, et al. On distributed fault-tolerant detection in wireless sensor networks[J]. IEEE Transactions on Computers, 2006, 55(1): 58-70.
[3]  Liu Kebin, Ma Qiang, Zhao Xibin, et al. Self-diagnosis for large scale wireless sensor networks[C]//INFOCOM 2011. Shanghai: 2011 Proceedings IEEE, 2011: 1539-1547.
[4]  Lee M H, Choi Y H. Fault detection of wireless sensor networks[J]. Computer Communications, 2008, 31(14): 3469-3475.
[5]  Wang Tsangyi, Chang Liyuan, et al. A collaborative sensor-fault detection scheme for robust distributed estimation in sensor networks[J]. IEEE Transactions on Communications, 2009, 57(10): 3045-3058.
[6]  Banerjee T, Xie Bin, et al. Fault tolerant multiple event detection in a wireless sensor network[J]. Journal of Parallel and Distributed Computing, 2008, 68(9): 1222-1234.
[7]  Yim S J, Choi Y H. An adaptive fault-tolerant event detection scheme for wireless sensor networks[J]. Sensors, 2010, 10(3): 2332-2347.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133